- AD-A150 582 SVNTHESIS OF TREE-STRUCTURED COMPUTING SVSTENS THROUGH 1/1
USE OF CLOSURES(U) KESTREL INST PALO ALTO CA R KING
29 NOV 84 KES-U-84-6 AFOSR-TR-85-006S F49628 82-C-080887
UNCLASSIFIED F/G 972

LAt an e e 2

Sl

DR AP
e oa

125

E
L B
E e
o

s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-}965 A

T " v AR T TN FRteC S o M IR ICRA Cpac
YT YT Ty e T TR T T TS N e T T, S Vi At N S S ‘i NS 4 Lttt sum el el Sl St adb b S I At A v L e e e

s

AFOSR-TR- 85-0065 |

KES.U.84.6

Synthesis of Tree-Structured

Computing Systems Through Use of Closures

by

Richard M. King

Cordell Green
Principal Investigator

AD-A150 502

Kestrel Institute
1801 Page Mill Road
“.' (Palo Alto, CA 94304

FINAL TECHNICAL REPORT

& November 1984 D ‘ \C

Prepared for: 9@
FEB1°
. Air Force Office of Scientific Research
' Building 410
® Bolling AFB, DC 20332 \J E
{

Rescarch sponsored by the Air Force Office of Scientific Research (AFSC), United States Air
Forc2, under contract F49520-82-C-0007. The United States Government is authorized to

reproduce and distribute reprints for governmental purposes notwithstanding any copyright
notation hereon.

This document was prepared under the sponsorship of the Air Force. Neither the U. S.
}_' Government nor any person acting on behalf of the U. 5. Government assumes any liability
:‘ resu'ting from the use of the information contained in this document.

-

¢

= o3
= Approved for public lk"51%5/
b' d‘;‘ribution unlimitedo

2

@

[

2 UG Fue GOHY ve e

et

P s e) e . - Coe
N L - - . - . - . . .,

. REAKH o ‘,__-,-,~/-.- e KPP . . - .
E-t';“;' ROREAD P SR SR L PR PP LA WL NPT Y SA B WSS, P W Ve

I,_... Lt t N st et et et P IO SR S I

. R .
s B Cota e, . . .
PR SN "N L VA TR PO PO S R W S P P

SRS A A M T T RAPRAAE Sl Al Sl S P S S A S A S S 2 b S Bl Al Sng el Lo W e TYEETITTY T TATR RS

UNCLASSIFIEDY . .

SECURITY CLASSIFICATION OF THIS PAGE
__—*
REPORT DOCUMENTATION PAGE

18 REPOAT SECURITY CLASSIFICATION 1. RESTRICTIVE MARKINGS
UNCLASSIFIED
28 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
2b DECLASS!FICATION/DOWNGRADING SCHEDULE unlimited. J
4 PERFOAMING ORGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

KES.U.84.6 AFOSR-TR- 85-00635

6a NAME OF PERFORMING ORGANIZATION Tb. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

11 A (1 applicabie)
Kestrel Institute Air Force Office of Scientific Research

6c. ADDRESS (Cily. State and ZIP Code)) 76. ADORESS (City, State and ZIP Code)
1801 Page Mill Road Directorate of Mathematical & Information
Palo Alto CA 94304 Sciences, Bolling AFB DC 20332-6448
8s NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicabie)
AFOSR NM F49620-82-C-0007
8c AOORESS (City, State and ZIP Code! 10 SOURCE OF FUNDING NOS l
PROGRAM PROJECT TasSK WORK UNIT
ELEMENT NO. NO. NO. NO

Bolling AFB DC 20332-6448 61102F 2304 A2

19 TITLE rinciude Security Classification:

SYNTHESIS OF TREE-STRUCTURED COMPUTING SYSTEMS THROUGH USE OF CLOSURES, -
12. PERSONAL AUTHORIS) - T .
Richard King .

1Je. TYPE OF REPORT 130. TIME COVERED 14 DA;E OF REPORT (Yr Mo.. Doy, 15 PAGE COUNT

Final rRom 1/17,/83 7o 30/8/84] 29 NOV 84 40

16. SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessory and identify by block rumber)
FIELD GROUP sus GR Multi-processor synthesis; tree-structured multiprocessors;

concurrency; closures; divide and conquer; trees; actors.

19. ABSTRACT /Continue on reverse if necessary and identify by biock number;

During this past year the investigators have concerned themselves with the synthesis of tree
structures. These structures offer, in the opinion of the investigators, the best hope of
achieving subpolynomial running times for typical problems without a degree of inter-
connection that makes physical implementation difficult.

One would like to be able to synthesize trees using divide and conquer. Divide and conquer h
is an appealing technique for tree synthesis because of. the isomorphism between the shape of
the desired synthesized system and the recursive descent implicit in divide and conquer.
Additionally, the technique makes good use of theorem proving techniques which are rapidly
being developed for other purposes. Certain problems arise, however, when one tries tc use
divide and conquer to synthesize a tree-structured computing system. The exact character-
istics of the problems that can arise fall into three categories, to be described below, but
the basic difficulty is that nodes that are high in the tree are required to either (CONT.)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURLITY CLASSIFICATION

uncLassiEIEO/UNLIMITED & same as apr. O oric usems O .UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER

Dr. Robert N. Buchal (28'5“;33'1 COZ'9'39

$
‘
r.
F. DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OSSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAC

22c OFFICE SYMBOL

|
)
1
1
1
)
A
-n.'.A
b . . BRI IRA it . s T Lt e e e T e s el ‘~.-"_‘~' L e
| SR S 5 SN e T TN e o e

~ .- - - Pl hlinite e dhath SN0 o e, S Ty e
- RNt A R JP it e i St Ao darh i fiia b S e S S et —— A e 3
e . At B et .

'@ __ UNCLASSIFIED
X SECURITY CLASSIFICATION OF THIS PAGE
ITEM #19, ABSTRACT, CONTINUED: compute or communicate large amounts of data.

The investigators' primary solution to this problem is to replace the original specification
which in general declares the existence of an output array that depends on various elements
of the input array, into an equivalent specification which declares the existence of a
certain closure, or specialized functional object, together with a declaration that it be
applied. Constraints are imposed on the closure so that application of this closure will
have the desired effect. The investigators show that closures can be computed and applied

rapidly, in time 0(login) for small, constant i on problems of size n, even in many cases
where the normal results of divide and conquer would be a computation that could only be

performed in time 0(nd) for strictly positive constant j.

%

The investigators have also found an interesting synthesis path for several binary addition
circuits that uses this technique and another technique called quantifier levelling.

e RN
.
l’ L

L o BN o

@ .o e

o L J
' UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

AR Aarad ahEC aE a PaaN

S ol e o

P A an aa dae Bat gbee Bl EnSCii et L 2 et fin Bk Bl

pr——

Accession For 7
— - PN —————
NTIS GRA&I
DTIC TAR
Unannounced ;"‘] Contents
Justirication _
—_ ..
By __ — e
_Dist ritut: sy
Avaii;\.‘(ility Coues]
Aviis and/or N
Dist specinl
A- 1
VA)
Page
ADBUIACE i e 1
Chapter O Trees of Processors. 0 i e it v vt it e e e e 2

Chapter 1 Closure-Assisted Divide & Conquer or, LAMBDA: The Ultimate Transceiver s
1.1 MOtivalion o e e e e e e e e e e e e e e e e e e 5
1.2 Divide & Conquer Paradigm and Tree Synthesis. 5
1.3 Descriptionof Closures e e e e e e 8
14 Transmittinga Closure oo .. 9
1.5 Formal Arguments for the Admussibility of Closures. 11
Chapter 2 Examplesof the Useof Closures 14
2.1 The Handshake Problem, 14
2.2 Divide-and-Conquer with Closures 15
221 Broadeast. L L e e e e e e e e e e e e e 15
222 Parallel Prefix (. e e e e e e 16
2221 Overview L. L e e e e e e e e e e e e 16
2222 Derivation L e e e e e e 16
2.2.3 Connected Components. e e e e e e e 20
2.2.3.1 Derivationof a Tree Structure 21
2.2.3.2 Alternative Data Structureso 24
2.2.3.3 Results of Storing the Mapinthe Leaves. 26
2.2.3.4 Results of Storing the MapinInternal Noges. 29
Chapter 3 Use of Additional Techniques - Binary Addition 31
3.1 Notation e e e e e e e e e e e e e e e 31
3.2 Carry Look-ahead Cireuit. 0 it e e a2
3.2.1 Quantifier Levelling.0 32
3.2.2 Data Path Width Reduction «..... M
3.3 Ripple-carry and Bit Serial Cireuits oL 35
References. L e e e e e e e e e e e e ar

AIR PORCE OFFICE OF SCIENTIPIC RESE'R™ (APSC)
NOTICR OF TRANSMITTAL TO DTIC

Thais technical rapoist bas ~:) - “oaniis
appraved for pat s cala. e (A% A5 Yaaelp,
Distridvution 13 unliaited.

NSTTHEW J. XEAPER s
Thief, Teshnical Information Divigion
. |

e MR e Wl G S A b W S S SN C S A . AN . AN « v “Wata .

Plates

Page

Figure 1. Simplified Parallel Prefix Internal Node 11

P. Figure 2. Our “Standard” Specification of Binary Addition 31
Figure 3. *Grade School” Specification for Binary Addition. 32

Figure 4. Synthesised Look-Ahead Circuit for Binary Addition 3

Figure 5. Ripple Carry Parallel Structure 36

Figure 6. Serial Adder. L e e e e e e e e e 36

#

AR - . . “ . ot et 8 TR DR ORI A, ., . Decimeirteee
LI W T U T 1 FUBTRPTEG UL LU, . W

M- e Sl aie dov i na Sa Sk u-a b au e gee MR R ACARIR S A

@

Abstract

} During this past year we have concerned ourselves with the synthesis of tree structures. These
@ siructures offer, in our opinion, the best bope of achieving subpolynomial running times for typi-
cal problems without a degree of interconnection that makes physical implementation difficult.

L

Cne would like to be able to synthesize trees using divide & conquer. Divide & conquer is an
appealing technique for tree synthesis because of the isomorphism between the shape of the
dasired synthesized system and the recursive descent implicit in divide & conquer. Additionally,
the technique makes good use of theorem proving techniques which are rapidly being developed
e for other purposes (see [Smith-83]). Certain problems arise, however, when one tries to use
divide & conquer to synthesize a tree-strucured computing system. The exact characteristics
of the problems that can arise fall into three categories, to be described below, but ‘the basic

diffculty is that nodes that are high in the tree are required to either compute or communicate
l:rge amounts of data.

"
o

_".'. .

PR

‘v

.
Ealala

Cur primary solution to this problem is to replace the original specification, which in general
[daclares the existence of an output array that depends on various elements of the input array, -
into an equivalent specification which declares the existence of a certain closure, or specialized .
frnctional object, together with a declaration that it be applied. "Constraints are imposed on
the closure so that application of this closure will have the desired effect. We show that closures
cin be computed and applied rapidly, in time O(log’ n) for small, constant ¢ on problems of size
n, even in many cases where the normal results of divide & conquer would be a computation
® that could only be performed in time O(n?) for scrictly positive constant ;. -

We have also found an iateresting synthesis path for several binary addition circuits that uses
t1is technique and another technique called quantifier levelling.

\»\ ! R \/ .‘ [’ -

“ - - .0
!

i

(' P-!
'T:j'.:

(» jf!.
3

£

o ~4
e

L arel ol AL S g arul el in LNl e Ia A rAT'*;’_'~ ad Padinrdiiredir et St A A et et i A S

.
Cha;iter 0)

® Trees of Processors

®

@

| In tl.is report we examine one class of methods for producing highly concurrent architectures.

" The: e architectures are vitai to meet the needs for sufficiently fast computation to make certain
protlems practical. Automatic systems for the synthesis of these architectures are therefore
important because hand crafting is a difficult, expensive and error-prone process. In this report
we explore the synthesis of tree-structured architectures. Other architectures have been explcred

’ in prior reports ([King-83], [KingBrown-82]).

(s

Ls

Trees of processors can be used to efficiently implement many specifications because the tree is
that topology with fixed arity and lowest connectivity that sllows a distinguished node to have
contact with all other nodes in O(log n) steps, which is clearly the best possible. TRANSCONS
([King-83]) therefore has facilities for specifying, synthesizing and manipulating trees.

The description of a tree is specified in TREE declarations, described below. Before describing
the syntax of a TREE declaration, we will describe some of the semantics we intend for it.

The trees we intend to address are used to shorten the longest path lengths within the collection
of processors, and to balance the workload of a computation. There are problems amenable to
a tree solution, portions of which are in some sense more important than others (for example
Optimal Binary Search Trees), but in these problems there must be a specification of relative
importance that has a size comparable to the sise of a good specification of the solution.
We will therefore model solutions to problems of this sort by building separate trees and
AGGREGATEing them. Each tree described in a single locution will be balanced.

Several principles govern the design of the tree system of TRANSCONS.

> All trees are as balanced as possible. (We use binary trees; extemsions to trees of higher
arity introduce no new principles.) No flezibility in termas of shape is assumed, nor i1 any way
provided for ezpressing shapes.

> A tree specification must include a size, which can be any integer greater than one.

» Tie shapes of two trees of the same size are identical. That is, there is an isomorphism
=~ between two trees of the same size that maps parents, left children and right children
respectively into parents, left children and right children. There are “compile-time” constructs
in the TRANSCONS language that allow for the specification of connections to the node that
is =~ to a given node, or AGGREGATION between corresponding nodes of different trees.
One way to achieve this identity of shape is to have a left-biased tree that is as balanced as

- .. DN -t
PR R PP TR W WL S AP e . I 6 W

L R -
[D Sl e
LA, P TR P ST O, W WY WY

R [T SN S P S - PN AT, P ey

[\

(e

Ls

_—-W‘H“
PR e DA s snsh e m g Sogl St Selh Gl Sl S B I0 S AE AN AT) N gt " g s ol il " ol N s

0 TrRERS OF PROCESSORS 0. TRaEs Or PROCRESORS

possible. In other words, path lengths from root to leaves differ by at most one and if one
such path is longer than a second the first path must be to the left of the second.

» The nodes of a tree are divided into three groups. They are the root, the internal nodes, and
the leaves. The leaves are further distinguished by indices. References to any of these classes
of tree nodes, either to attach procedure, to specify communication such as HEARS, or to
AGGREGATE can be made. Tags are provided for a node to refer to a node of another tree
that is o~ to it if the two trees are the same size. This allows nodes in ~r-equivalence classes
to be AGGREGATED or to HEAR each other. For this to work values have to be declared
properly. Note that a leaf has to offer instances of values that are HEARd upward, and the
root has to offer values that are HEARd downward.

To support these stipulations we have the TREE data type. A tree is declared and its components
lzid out using the type facility of CHI. As an example, we will describe below a situation where
there are two trees, T and U. Each is of size n. Each internal node of T passes a value to its
children after having multiplied it by a value from the corresponding internal node of U. Each
iuternal node of U adds values from its two children. The procedures at the leaves of T and U,
raspectively, are described by functions H and G, not interpreted here.

T istype TREE (i),i€[1 ..n—1] size n
root HAS v TALKS leftson (SENDS v)
TALKS rightson (SENDS v)
HEARS source (USES outside-value)
HEARS U.root (USES u-value)
inter HAS v TALKS leftson (SENDS v)
TALKS rightson {(SENDS v)
HEARS parent (USES v.parent)
HEARS U .inter (USES u-value)
leaf HAS ! HEARS parent (USES u.parent)
U istype TREE (i),i€[1...n—1) SIZE n
root HAS u TALKS T.root (SENDS u)
BEARS leftson(USES v.left)
HEARS rightson(USES v.right)
inter HAS u TALKS T.inter (SENDS u as u-value)
HAS v TALKS parent (SENDS v)
BEARS leftson(USES v.left)
HEARS rightson(USES v.right)
leaf HAS v TALKS parent (SENDS v)
HEARS some; (USES A;)
(I T .root)
v « outside-value X wu-value
(ia T.inter)
v — v X u-value
(ia T.leaf,)
li — H{v)
(in U.root)
v « vlieft + v.right
(fa U.inter)
v ~— vlieft 4 v.right
g — v
(in U.leaf))

- - (i ™ A s Dun Jake Ml 22 9 2ol g S Ar Sy “Shadl e 8o v Jane i Bt § BS AR ole -

0. T¥Ex88 OFr PROCRSSORS 0. Trass or Pnocuson_g

o v — G(A)

Notc the SENDS u as u-value locution. This causes a value to be known as u in the the
intermediate node but to be known as u-value in the recipient.

In the next Chapter we show the power and limitations of divide & conquer and describe a
techuique for mitigating the limitations. In the Chapter following that we give examples of the
® use of this technique.

aden Wl B a S Baa ik 5% g S A b Savo et SEC NS ANC Sl d Pl ol o T’: - Py oW W
g

Chapter 1
D Closure-Assisted Divide & Conquer =

or, LAMBDA: The Ultimate Transceiver

§1.1 Motivation e

~

Suppose information must flow from processor B to processor A, but there is a conceptual
advantage to viewing the problem as if information were flowing the other way. We have
two motivating situstions where this is the case. One is the handshake problem, where an
intermediate processor in a chain of pipelining processors must be able to declare its readiness
to handle another datum after it has proccessed a first. The second is problems requiring tree-
structured collections of interconnected processors. We would like to use divide & conquer to
svnthesize these trees, but that technique is difficult to apply if data conceptually flow both up
aad down the tree. It becomes easier if the flow is conceptually one way. We claim that divide
& conquer is a powerful synthesis technique tha: can produce a large class of tree structured N
a:chitectures if problems can be rephrased in terms of one-way data flow. o

We want to bring about a structure in which information flowing in one direction tells the -

receiving processor what to do with other information computed in the receiving processor. We
P want a new type of datum, the “self-addressed stamped envelope®. Processor A sends processor
B an instance of this type of datum, and B can later use it to cause the data to be sent back
tn A and to be used properly.

We use closures to do this. We explore the weaknesses of divide & conquer without closures
b2low, and then we explore some of the implications of closures.

[/ -3
§1.2 Divide & Conquer Paradigm and Tree Synthesis
Divide-and-conquer (D&C) is a widely used technique for the synthesis of single-processor pro-
g-ams, and one feels that it should be a good technique for the synthesis of tree-shaped paralle!
L, s'ructures. Trouble often arises, however, when we try to use D&C for this purpose. _
' with apologies to Guy Steele [Steele-77]
&

R . “- e e e R S
St S P AR el -t
RO S i A Lt . - .

N .« SRt . St
PIPREY - . e T g P P [IR - . N - - o
AR TR P AP L P PT, FEVETR VLV P P VR L P PR RETEAPRPE. s S WAL WAL AL WL O Y N

«TonTe

It e AV R S S AR

K ¢

o

U

1. LAMBDA: THB ULTiMATE IOT 1.2. Divips & CONQUER

Consider what the D&C technique actually is. “To solve a ‘large’ problem instance, break it into
pieces, solve the problem for each of the pieces, and combine the solutions”. This is a technique
for generating O(n) and O(nlogn) time, single processor solutions to a wide variety of problems.
See, for example, {Smith-83] and [Knuth-voll].

Intuition would lead us to believe that D&C is useful for synthesizing tree-structured paralle]
strurtures, because the structure of a solution closely matches the structure of the set of
processors. Three sorts of problems arise, however:

» rootlock: When we try to combine two subproblems’ solutions, the amount of information
traveling either from one subproblem to the other or from the subproblems to the combination
operator, or the amount of work necessary to combine, may be asymptotically large in the
problem size. A naively synthesized parallel structure would have to perform ail of this work
in one processor, namely a8 “root® processor that has responsibility for combining two half-
so.utions into a solution to the whole problem.

» sequentiality: In a variant of D&C, one solves one of the subproblems first, and uses some
function of the solution as a parameter to the process that takes place on the second side.
1t is clear that in this case no problem element can enter the computation until all previous
elements have been used. There is no concurrency.

» bidirectionality: Information might have to low both up and down the tree to make a solution.
This situation can make formal description of a combination operator for D&C hard. It might
appear that this condition is intrinsic to divide & conquer, but that is pot the case. The data
could already be distributed among an array of processors (or available to be so distributed)
and the division step can manipulate indices only.

It is possible to have bidirectionality without sequentiality, but not vice verss. Rootlock is
independent of the other two situations.

These three properties of D&C solutions to specifications are impediments to easy synthesis of
tree-structured parallel structures for these specifications.

A specification, three of whose natural D&C solutions have one of these features each, is Prefix
Summation. In this specification we have a vector A of dimension n, and we want to create a
vector A’ such that V1 S ¢ <nfai=72, o ; ;0] In what follows 1 will use the words “left”
and “right” as if the array were arranged in'a row with a, leftmost and a, rightmost.

One solution is “to perform prefix summation on a non-trivial vector, divide it into two halves,
perform prefix summation on each half, and add the rightmost element of the left result to each
element of the right result®. This solution has two-way data flow.

A second solution is to first define “augmented prefix summation with augend 2° as
Vii<n[ai=z+ 3, Sigi a;]. We then say that to perform augmented prefix summation
with augend z on a non-trivial vector a;.,, divide it into two halves a;..+ and Gy 4-1:4, Perform
augraented prefix summation with z on the left half, and perform augmented prefix summation
with z + @', on the right half. This is intrinsically sequential.

A third solution is similar to the first, except that the result vector is carried up the tree as the
valuz of the D&C step rather than having as the goal to develop the new values at the leaves.
This has rootlock, i.e., it is intrinsically an O(n) solution, as it requires funnelling the entire
resuit vector through the root.

Our solution to this problem is to use an upward (toward the root) flow of closures to represent
the downward flow of data.

-8 -

.\

MSAE Aal g Mt Ml raal Se Wl Sl te i el v I andnnl sl Sl A Sl A Sl ot A At G CH

1 LAMBDA: Tus ULtiMaTE [OT 1.2. Divips & ConQuan

The solution is based on the idea of passing a form of data called s closures up the tree. A closure
is a procedure or function definition together with an environment, i.e., a set of name/value pairs.
When a closure is invoked, the procedure or function is invoked in the included environment as
aygmented by parameter binding. When processor A passes processor B a closure, A is said to
bz the closure’s host and B the recipient.

The actual closure is not sent. Instead, a token is sent that the recipient can use to invoke
the closure’s program by sending back (to the host) the token together with values for the
s-guments. By convention this causes the host to invoke the procedure, using stored bindings
aad possibly some new ones from the sent arguments as an environment. The motivation for
this is that while conceptually data (i.e., the closures) are flownng in only one direction, in fact
aata are flowing in the other direction as well {in the form of arguments and snvocation requeats).

In tkis manner we can reformulate the problem from one of creating some new array that is
a function of an existing array to that of creating a closure that, when invoked, will perform
a given action on the leaves of a tree. This action is the creation of an element of the pew
a-ray in each leaf. The original specification is transformed into a specification that declares
tae existence of a closure that, when invoked, will satisfy the original specification, followed
ty a specification that the new closure be invoked. The three barriers to simple tree solutions

dascribed above do not arise. We consider a synthesis of parallel prefix summation in tte next
Chapter.

We have excharnged the difficulty of reasoning about two-way data flow with the need to reason
about closures. We feel that this is a good bargain because reasoning about closures only requires
the addition of new axioms to a theorem prover's data base, while two-way data flow requires
changes in the way we look at D&C. Below we show that this change of view costs littie speed,
aad in the next Chapter we show that no expressive power is lost.

We conjecture that this technique can bring most O(log n) and O(log? n) tree parallel structures
within the reach of 3 D&C-based synthesis method. We support this conjecture by several
svnthesees in the next Chapter. Since a tree-structured processor is inexpensive to manufacture
compared to more highly interconnected machines and seems to be reasonably powerful, we feel
that automatic tools that make use of this power easier would be an important contribution to
the technology of synthesis of parallel structures.

We first prove that the computation of the closure in the root node is fast:
Theorem 1.1. Suppose a problem fits a divide and conquer scheme without sequentiality or

bidirectionality. That 1s, that the computation of the result in question for the subatring of the
problem ranging from |l to u ¢s

Ve if I=u then V|

') otherwise G(V¥, Ve
and T(G) (the time to compute G) i3 < O(F(u—1 -+ 1)), wher: # is a nondecreasing function.
Then T(VT)=0(F(n)logn).
Proof: Note that the form of the definition of V' precludes sequentiality and bidirectionality.
We are using value semantics for the call to (7.

T(Vi)=T(V'), so T(V') is bounded. Say T(G) < coF(u—I+1). We offer an inductive proof that
T(VP) L coF(u—1i+ 1) lg(u—14- 1) + T(V?"), where ¢o is the constant of T(V3)=O0(F(n)logn).

The base case is immediate.

~7-

A A YA S AN G0 B0 il EE SAEL ENG SV Srvk SPNL el SRR INL e

BN

et

al

G e A Mg e b Ao dae e dn suau s Se e atan R AL AL IEAL AL Gl SLAELELE LA SRLEE
]

1. LAMBDA: Tus ULtinvaTs 10T 1.3. Descrirtion or CLOSURSS

® If {5 u then

T(VP)=max(T(VIH30), T(VE L /1)) + T(G) (definition, nonsequentiality)
<coF((u—1+ 1)/2)1g{(u—i +1)/2) + T(V") + T(G) (by induction)
<coF(u—I+ 1) 1g(u—I + 1) + T(V') (monotonic F)

®
AT A . . B

This is O(F(u—I + 1)log(u—1I <+ 1)), which is O(F(n)logn) at T(V]). 8

This theorem oaly holds if sequentislity and bidirectionality are not present. Sequentiality can
not be present because T(V)= max(T(V{!+*V/3), T(v¥, . .. 1) /21)) + T(G) only bolds if the 1
computation of the Vs can proceed in parallel, and bidirectionality must not be present as there - 4
[is nothing in the statement of the theorem to allow for this. It holds even if rootlock is present,

but in such a case the theorem produces a weak result, since F'(n) would be large.]

We then prove that the application of the closure that is computed in the root is also fast:

Theorem 1.2, Suppose a closure is computed in the root of o balanced binary tree. TAat :
closure can contain closures whose hosts are its children. Those closures, in turn, can con- -
tain closures whose hoats are their children, etc. Suppose all closures computed within the -
tree are of the form C;‘::X:l' "7:'+*'w“[G(Vr',V:,+,,W,“)] where V¥ includes C} and values
that are available in constant time, W} includes locally available values, and G s of the
Jorm G(V, V,)=(Ci(Gi(V1, V%)) | C,(Gi(Vi, ¥, || Go(Vi, V,,W})))) (here Ci is the closure con- .
tainzd in V; and Gg con affect W}.) If max(T(G,), T(G1), T(G,))=O(F(l—u + 1)), then T
T(C?)=O(F(n)logn) -

(o

Procf: virtually identical to previous proof. §

In summary, the technique cf computing closures from component closures is a technique which,
together with divide-and-conquer, provides the ability to synthesise a wide variety of tree
strurtures with few of the technical problems that other synthesis methods might encounter R
[. concerning reasoning about path lengths or the cardinality of sets of nodes. It allows us to do -.1

this and to still produce the O(log n) (or O(log® n) for small 5) parallel structures we expect from '{ -
treet. . et

: §1.3 Description of Closures %
o e

A closure consists of a procadure, and bindings for some of the procedure’s free variables. The
procadure, in turn, consistt of a piece of program and a binding list. The concept was first .
described in Church’s \-calzulus [Chureh-51]. Closures are valued for their expressive power N
evep on single-processor algorithms. They are elements primarily of dialects of LISP. See, for
exariple, [Steele-77], [Moon-82], [Interlisp-83]. A similar concept, actors, is also found in other
0 langages (See, for example, PLASMA in ([SmiHew-75].) Actors are also described, as here, as
a method of expressing interprocessor communications concepts. I here explore a case in which
it mikes the task of writing programs an easier one for ccmputers.

It is common to use the notation A2y, z3,...,2,[F(2y,22,...,2a,¥1,¥2,...,Ym)] to denote
abstraction of a function of n parameters from a function of n <+ m parameters. The y,’s are

() -8-

W

AT AT A W

b Y
- - . - - -
‘. - 3 - N T . " ~ . - - . - " - . - . . .
. - g - . g ~ Y N X ~ b N B * ~ - - . - . . e . . -~ - o - -
T AP O P PR P IR U PN S P Wy, . PRI, I AT TR AE T A U, S PO S UL, WU N PN

F';‘b‘. AR AL ta M M

o

1 LAMBDA: Tus ULTiMATE IOT

1.4. TRANSMITTING A CLOSURS

fiee variables, meaning that their values are determined by some of the context in which the
function is evaluated.

We will use “\g[F(2y. ...,41,...,21, ...)]” to denote a piece of program text that makes a
c'osure that can be applied to as many parameters as there are z's. In other contexts we will
use that to name the closure itself. When it is applied the z-values from the application, the
y-values available at closure creation time and the z-values at application time will be used. The
y's are called the closed variables. We will use AJ: ="+ [F(zy,...,y1, ..., 21, ...)] created by
the above fragment to denote the closure in which y;==v,,

§1.4 Transmitting a Closure

To transmit a closure from one processor to another, it is not necessary to transmit the entire
program and all of the environment values, provided that the processor sending the closure
s'ands willing and able to perform the work, and that the side effects are within reach of the
s»nding processor. In the cases we explore there are side effects that are only within reach of the
s:nding processor. Since the motivation for closures in the first place was the desire for a datum
that, when exercised, would cause certain desirable behavior in the host, this will normally be
tie case.

All that is necessary is that the transmitting processor send a token of some sort. The receiving
processor can save the token and later use the closure by sending back the arguments, the token,
aad control information.

V/hen this is done, the processor serding the closure (and willing to do the work) is called the

c osure’s host, and the receiving processor (which has a license to use the closure) is called the
recipient.

We say that a closure is live if there is a possibility that it will be invoked at a given time.
4. closure becomes live when it is sent and remains live until the recipient reaches a point in
its procedure past which it can not invoke the closure. We will have more to say about issues
concerning the liveness cf closures during the remainder of this Section.

Closures can be efficiently implemented in a reasonable machine model. Internally, a closure can
be implemented as a block of memory locations containing a *pointer” to the program fragment
aad a list of all closed variables and the corresponding values. A pointer to the block could be
used as the token. When a closure is applied the recipient can send the host a copy of the token,
together with whatever other information is needed (primarily the argument(s)). The host can
use the received token and can invoke the proper code with the proper environment and with
the arguments bound to the parameters by using the information contained in the closure and
message. A piece of program text (in the host processor) that creates a closure will be called
a closure generating form ot CGF, and a piece of text (in the receiving processor) that invokes
one will be called a closure invoking form or CIF. The class of closures generated by one CGF
is a family. An instance of the family of closures generated by a specific CGF named ¢ will be
called a C instance or an tnstance from C. Members of a family differ only in the environments,
snce the code will be the same.

The required data transmission can be reduced in cases where it is possible to infer various
things about the use of a closure. For example, if it is known that only one instance from a
g ven CGF is live at a timne, the host needs not send the token, but only the name of the CGF.
That name would not vary and can be “assembled into® the CIF. This can be true even if there
can be several CGF instances for a given CGF, provided that the host knows what order the

-9 -

. “‘A-\ .

N Y

av . . - o Leoe
BV WP TP W e

T

LA AL S

Y

oY A

-

T T T e R N R N e A I LT T LY T I LR INL ELELTLILI LML e e LR e

1. LAMBDA: Tue ULtiMATR IOT 1.4. TRANSMITTING A CLOIUR_!

recipient will use the closures it receives. If there is only one CGF in a processor, and only one
instance of the closures that it generates can be live at one time, the token can vanish; the fact
that the *receiving” processor wants to apply any closure is information enough! The closure
has Leen completely swallowed up; information only traveis {rom the recipient to the host, even
though the synthesis was performed as if data flowed only in the other direction.

A fu-ther simplification, of interest for the problem of synthesizing parallel structures that will
later be reduced to VLSI, is available. Suppose the following conditions are met: Applying a
closi.re does not include changing state in the hest processor. (In this case, for the application
to be useful it must cause other applications in the host.) Assume also that there is only oue
live :losure in a given family at any time. Assume further that the values used in that closure
to c=ll other closures hosted elsewhere can be computed, using only values available to the host,
by nieans of corabinatorial logic (the code fragment is loop-free and consists only of operators
chosen from a library of integrateable operators).

In this case it is possible to perform the closure using only “combinatorial logic® in the host
procassor. Specifically, no register need be provided ‘o hold the closure’s parameter in the host
procassor. Instead, logic mnst be provided to map a signal representing an application of the
clostre to signal(s) representing application(s) of the subsequently called closure(s). Registers
are provided to hold all of the values of the closure. An example takes from the Parallel Prefix
structure (whose derivation sketch is in the next Chapter) will make this clear.

We have the code fragment to synthesize a closure, aamely \$+C-%[Ci(s) || C,(v; + 2)]}. Here
it cen be established that there is only one outstanding instance of the closure at any time,
that the closure does nothing more than apply other closures to a function of its argument, az.d
that the computation performed on the argument is "easy”. We can therefore use the circuit of
Figuee 1:

lpor clarity, the exposition assumes that the prefix operation is addition, and that we consider addition
to be integrateable.

- 10 -

R o e e e - R RN
E . . . P e e . AP
" I . S . SN

- Y - 0 - g . » - - - ~'_ . ot .'Q-‘.-' Y - ..'
B PR IR\ TR AR LIAL WA, S, TR R, P4, W S W, VPN S A L alad RSP L AP

e
Sola 4 4

3
-'.‘
N
o
-
o
’ "e
-t
S
X

A A

w - C Rl 30t fuitd ey,
A Eeen ag o g @ 3 Da 0s Taa &£ S Ac PR 40 Al o A~ adl uies ot i ol uia Al AR S i A [l -

\
1 LAMBLA: THR ULTIMATR IOT 1.5. FORMAL ARGUMENTS FOR THE ADMISSIBILITY OF Cx._gsyﬂg
®

’ R :

Figure 1. Simplified Parallel Prefix Internal Node

§..5 Formal Arguments for the Admissibility of Closures

In this Section we formaiize the notions we use to argue that restricting communication to the
7 upward direction in trees is a harmiess restriction, not preventing the synthesis of tree parallel . %
swructures to meet any specification that could have been met absent this restriction, provided

only that we also allow upward communicatior closures and that we not consider the application
of a closure that was communicated upward to be s downward communication.

First we need a formal deflnition of a tree parallel structure: 1

Definition 1.3. A tree parallel structure ftree structure) is o collection of processors together
with programs that meet all of the following conditions.

» There are three types of node: leaves, intericr nodes (which need not be present), and the root.

» (tree) There are various two-way connections (“wires”) between nodes as follows: roots have a
left and right wire, interior nodes have g left, right, and parent wire, and leaf nodes hive s
parent wire. A parent wire must be connected to either a left or a right wire, and vice versa.
Node A (resp. B) fs an ancestor (resp. descendant) of the other if there is a poth from it to
the other using only left or right — parent (resp. parent — left or right) wires. If the firat

wire on the path to a descendant s a left (rezp. right) wire the descendant 1, o left (resp. right)
descendant.

(’ -11‘

B
N }‘
]
b
.
s

Y
.’.'.'
... .

a2 ey L4 e DAL S P L . e

- b - . mil eaLe Rl RLEFLEL, VLT TNeT e Te 0w
R e Rl s Bat Bat Ao o aur Sar aa- /2 id ohd ol JBIE abl a<EC ahit AR 2¢ 4 Al g A il R*SadCie KRl dh kgl Sake Sad Skt haSia R S A

1. LAMBDA: THus ULtivate IOT 1.5. FORMAL ARGUMENTS POR THE ADNMISSIBDILITY OF CLOSURES

- » (numbered leaues) The leaves are indezed by & totally ordered indez set (“numbered”) so that
the indez of one leaf must be less than the indez of 6 second leaf if there ss a common ancestor
Jor which the first leaf is o left descendant and the second a right descendant.

» (homogeneous) All nodes of one type run the same program. Programa are allowed to do
reasonabdle forms of computation and to try to send ond receive information on the wires.

» (angly buffered) If a program tries to receive information over a given wire it will do nothing
else until the program of the node at the other end of the wire tries to send. If a program tries
to send on a wire twice without the other program having tried to recesve, the sending program
will do nothing else until the other program tries to receive. Programs may perform closure
application with no regard to these restrictions, but the transmissson of the closures must have
obeyed these conditions. Programs may test whether a line has or can accept data and therefore
avosd waiting if it cant. TAe sstuation where neither program at either end of the wire can send
or recesve §s posssble, but only for a bounded amount of time.

We need a definition of a tree parallel structure with upward communication only:

Definition 1.4. An upward tree parallel structure is o tree paraliel structure in which no com-
munication is specified from any left or right end of a wire to the corresponding parent end.
Closure application does not count as 8 communication.

This is a formal definition of the objects described by TREES statements, and in the rest of
this Subsection we will explore some of the implications of this definition. In particular we are
interested in an assertion that limiting communication to an upwards direction but allowing)
closures gives the same expressive power as allowing communication in both directions but not _ K
using closures. y

First we need a lemma.

1
Lemma 1.5. Suppose we Aave two processors A and B with two wires adl and ab2 from A to B. :-'.-::j
These wires obey the “singly buffered™ condition above. It is posssdie to simulate those two wires O
with a single wire with no more than o constant factor apeed loss. L

Procf: Replace the wire. Raplace occurrences of read(abdl, z) (resp. ab2) in B with the fragment -
r while undefined(vabdl) do cAeck(); od; z — vadl; vadl ~ undefined. Replace readable(adl) with ™ 9
defired(vadl). In A, replace send(abl, z) with while defined(vadl) do check(); od; vadl «~ z; and)

sendable(vadl) with undefined(vabl).

Insert “check()® sufficiently often to guarantes execution periodically, with a period short com-
pared to the time it takes {0 communicate between processors. The check() call in A checks T d
whether vabl and vad2 are defined. If either is defined, say vadl, check() sends the pair ({1, vabl))
9 over the wire and does vabl +— undeflned. The check call in B is a finite state machine. In its
initi«l state it checks whether there is anything to resd on the wire; if there is, it reads it. This
should be a number ¢; the FSM enters a state S,. If check() is in S;, then it will check whethar
vabi is empty and only if so it will read the next object from the wire and enter the initial state.

Enuneration of the sequences of actions on the two wires, actual and simulated, serve to establish

corr-ctness. That there is only a constant-factor slowdown can be derived from the fact that e

L, chec ¢() does a constant amount of work unless it waits, that it only waits if (and as long as) the ”‘3
simtlated machine would have waited, and that it replaces each communication with a constaat RS

numoer (two) of communications. 1

-

Y

Now we can prove a fundamental theorem about un.directional communication in a tree. :

(s -12 - - @
.‘..‘

: -«
AL’-’:'-..: -',-_‘.::: :_.:::;_.:;;L“_‘A‘ o L‘ n -L.;": :-.;‘A Ry ; . R e L..a".h:'_“l_ TR W RSN 2 P |

$

‘\

-4

e I AR TS L Tl . . .
P PR P C VL Y P . PRAARIE VR R AR U i Wl WL TP P UL WP e PR

1 LAMBDA: THs ULTiMATE IOT 1.5. FORMAL ARGUMENTS FOR THE ADMISSIBILITY OF CLOSURES

Theorem 1.8. Suppose we have a iree parallel structure T without transmission of closures.
Then it is possible to perform the same computation that T performs on an upward tree parcllel
scructure.

Froof: Simulate a second wire from each child to its parent per the previous theorem. Call
that wire Ci (C,) where it impinges on the parent and C, where it impinges on the child.

The nodes’ programs must be modified as follows: All parts of the program must remain
unchanged except for downward communications, which consist of sending statements of the
farm (1) write(left, z) and (2) sendable(left) (or right, of course), and receiving statements of
the form (3) read{parent, z) and (4) readable(parent). These four forms are directly translated
as follows: (1)=read(C;, C); C(z), (2)=readable(C;), (3)=while undefined(v)do check(),0d. z ~
v v « updefined; send(C,, \{[v «~ z]) and defined(v). check() is from the previous theorem.

Additionally prepend “send(Cp,)\%iv — z|)® to former recipients’ programs and append
“sead(C, C); C(z) to former senders’.

That this causes correct information to be seen in the recipient is evident from the observation
that each closure is used to send exactiy one value to the recipient, exactly that value is used
as an argument to the closure as was previously being sent, and it is only used once {and
immediately rendered undefined). That this causes the programs to “*hang” at exactly the right
' mes can be easily seen from the fact that there is a closure in (say) C; exactly when the recipient

would have been receptive, and there is a value in v exactly when there would have been a value
available. §

1he key point to note is that all downward communication is expressed as closure application.
This suggests that it will be possible to express a problem that apparently can not be solved

by divide & conquer as the corresponding problem of creating, in the root, a closure that has a
dasired result when appl ed.

V/e have therefore shown that we do not surrender any expressive power when we limit tree
dzclarations to upward communication.

- 18 -

I R P I S A T N JRERER '-'_."
.‘-'-‘\'.'.“‘-_'. . .

YR T VYT s .
PO WAL AR W SR W GHE WA DALY W VAT WA ¥

(:.}

[

- Lt -
L

S R A LA APE gre ghdh ged i E . NP a AR AR ~ Dl ol - . - . -
\

|
]
)
|

e

“1

A L y . R N s .. L.
P P I P P R T U MY ST S, TR 1 LR S S) L I

Charter 2

Examples of the Use of Closures

§2.1 The Handshake Problem

Suppose we have a pipeline of information. Data are supplied at one end of s chain of prozes-
sors, processed by every intermediate processor (perhaps in combination with data flowing the
othe- way), and the results are either extracted at the other end or developed in some of the
intermediate processors. An example of a problem that can be easily solved with a parallel
structure of this sort is convolution, where the specification VA, B3IA'Vi[a\=3"; , o, 05kl
mus' be met. This can be accomplished by a row of processors, each responsible for computing
one 2lement of @, and a regimen in which the A.values flow one way, @, first, and the B-values
flow the other way, b, first.

To perform the synchronization using closures, we would have to state that the I/O processors
at exch end provide a closure that can be used to obtain the next datum.

There are two possible ways that use of a closure can result in data coming to be available to the
poinr. of use. Either the value can be returned as the result of the application, or the application
can ause the datum to be sent separately by the closure’s host.

We prefer the latter. We like closures not to return values, as we would have to invent a syntax
to allow other computations to proceed wkile awaiting an answer. Expressive power is not lost
in ferbidding closures to return a value, because one can instead have the value returned as a
sepa-ate communication. Our prime purpose in setting up paralle} structures is to allow different
proc:ssors to do different but related work simultaneously, and this would be compromised by
this restriction. I will assume this convention in what follows. It is clear that the difference is
one >f convenience and not a fundamentai one. It does, however, allow for such features as a
natural method for having a value be the result of the application of more than one closure.

Frequently a link will be used for more than one value. If it is convenient to use a closure to gat
succ leding values, there wili be many applications of closures. There are two ways to manage
this: either a single closure can be invoked several times, or use of a closure can cause a new
clost re as well as the next value to be sent.

The obvious apparent disadvantage of the atter, that it would seem to require the transmission
of extra, useless data, is not real. When the use of a closure causes it to become dead but causes

- radhir® A oo Bt e _Jd San tim Attt See et st thye Bt i acintt it St b At S Talt TN

A4

)
-
R
o]
e

(

2 PP ————— el) R S e Ml g v
h".ﬂ.ﬁm&'-&‘n\wu(\w_‘.v".l\f\\(\\"_.\ o . T -

2 ExamprLes OF THE Usz or CLosurss 2.2. DiviDB-AND-CONQUEBR WITH CLOSURSS

® another one to be sent, we have the situation where only one instance of a given class of closure
can be live at one time. In this situation the closure need not be sent

I* a closure is invoked repeatedly, this causes a problem in determining when a closure is dead.
This problem is oot unique to this circumstance, however; there can arise a case in which it is
n>t known whether a cicsure will be used even once.

§2.2 Divide-and-Conquer with Closures

In this Section we will consider the broadcast problem, the prefix summation problem, and »
part of one solution to the connected components problem that is amenable to tree solution.

§52.2.1 Broadcast

In the broadcast problem, a value or values known in a central location are distributed to many
locations. The broadeast problem can be described formally as Viia, — F(a;, z)] or perhaps
v j[vila}, ~ F(a,j, 2;)]. One method of synthesising solutions to this problem might be to
@ recognize it as a distinct pattern and carry a synthesis rule that produces a broadcast tree when
supplied an instance of a broadcast problem. Anoth2r solution is to produce a chain of processors
as a bucket brigade to distribute the information, and then to successively split the chain in
balf, but this has the problem that the synthesis process is iterated a variable number of times.
With the new mechanism of closure passing, it is possible to provide more general rules that
bandle broadcast problems as s special case without muitiple reformulations.

o Consider the application of divide & conquer. We want to preduce a cloture that, when applied
to z;, performs Yila}; «— F(a;j, z;)]. We hypothesise that to solve the problem we for & whole
subarray we can solve the problem for each of two pieces of the subarray and combine the two
solutions in some manner. Giving the names f/ and fr to the closures for the left and right
halves of the problem and fw to that for solving the whole problem, we then show that to
combine closures fl=X;[Vj € ry[a} «— F(a;, z)]] and fr=X;[Vj € ra[a} — F(a,, z)|] we have only

' .
) P

P to create fw=N/"1"[7l(y) | fr(y)]. We go through the following sequence: .
VA, s IAVIE(L. .. nlla,=F(ai 5)] -
= 3 C(z)[setlon(C(2))=V A, 2[Vi€[l. .. n}[a=F(a,, 2)]]) (abstraction)
hypothesis: = 3CJlactton(C}(2))=VA,z[Vi€|l. .. ulla\=F(a,, z)| (division)
A CP(2) = G(CY (Gula)), €341 (GH 2]
‘e
The abstraction step is the step of asserting that there is a function whose application brings
aoout the FOL expression that is being abstracted. The division step is the step of asserting that
it is possible to build a closure that solves a large problem, given closures that solve subproblems
o {~nd possibly other data).
This can be satisfied by setting G(C;(z), Ca(y)) = Ci(z) || Ca1y) (concurrent composition) and
Gi(2)=G,(z)=z.
It only remains %o describe the procedure for handling a singleton array. This is the closure
Mo} — Fay, 7))

® - 15 -

' *a ‘2 a_

R -

t l.‘l - A . MR . .
N L - 0 »~ . et et tae - AN
" R I -t T o . . " . :? PP IS ST S WS T s U TSNP R P WS
A R U " oy

ry Iy . » N s s e s oA & = €« . & & & =
S L RGN N T o B s e 4 Saryl PR S A LErLA 0~ AL LI SN . e AR PR A i i AN - - .

{ 4

2. Exanrrss of tHE Uss or CLOSURSS 2.2. DiviDB-AND-CONQUBR WITH CLOSURES

The computation of the top level closure is O(log n) where n is the size of the problem. This
is clrar from the reasoning of Section 1.2and from the observation that time(G)=0(1). (G
is creation of a closure enclosing two given closures.) Similarly, the time consumed by an
appl.cation of the top closure will be O(log n) from the fact that max(time(G;), time(G,))=0(1).
(G; and G, are identity operations.)

§§2.2.2 Parallel Prefix

2.2.2.1 Overview

To use the closure technique on a given specification, reformulate the problem from something
like vX,...37[P(X,T)] to 3CVX,...actlonC()=P(X,Y)]. Heuristically, the problem is
reformulated from that of satisfying a specific input/output specification to that of producing a
closire that, when applied, will cause the I/O specification! to be satisfied.

We -#ill need to define “augmented prefix summation with augend 3* as V1 < i < njal=z +
21 < ji0;]- We then say that the task is to deliver to the root of the tree a closure that will

. perform augmented prefix summation. To create a closure that will perform augmented prefix
summation with augend z on a non-trivial vector, divide it into two halves, get such a closure
from each half together with the grand total of the input values for that half, invoke the left
half’s closure with z as an augend and the right half’s with 2z 4 the left baif’s sum. We deliver
to e:ich node of the tree closures that will perform augmented prefix summation on the vector
comprising its leaves, together with the leaves’ sum. Note that the closure delivered to each
node’s parent has to include the left subtree’s sum, which is avaiiable now but won't be later.
A more formal description follows.

Asstme that a vector Ay) is divided inte Ay o and A{u'41...s)- Further assume that we are
trying to compute F(A(. «;) which we will denote F'¥. Further assume that we want to have
som: effects, local to the array elements. We would therefore want to compute a closure, C?,
that would have the desired effect.

P The generic combination operator for the values is F}'=G(F}",F:.+l,l, u,u') and it is
a synthesis task to derive the properties of G. Similarly, C;‘=G(C,"',C:.+,,l, u, o).
If the closure has an argument the situatiop is slightly more complex; we have
CH)=G(CY (G2, F¥' , iy 1 6, W), Co (2, F¥ , Fl 1,1, u,u'), L, u,u") where the F vec-
tors are the values available to (and incorporated in) C¥. This general schema need only be
used with specific combiners (i.e., G, Gi, etc.). As a simple example, prefix summation can be -
F performed by this schema if G = (Cies¢ || Cyigns) (where || is concurrent application), Gi(z)=1, - q:'

and G,(2)=z + vi. v, in turn,is computed as v; 4+ v,. Singleton v- and C-expressions are
C; =i Az[d} « a; + 2] and v,;=a,.

2.2.2.2 Derivation

’
In this problem, the specification to meet is Vi€(l...n]la} «— 3 ¢, ylasll. 1 will introduce
the nbbreviation 3" = L j€it..u) 85+ This then becomes Vi€[l.. . nja} =~ Ti]. We change the
IMore precisely, the problem of satisfying the I/O specification that requires no input and produces
tha. closure
L, - 16 -
Ly

mwtn—ﬂmm\v-j*-w-. LA e s -l <Rl S RS Sin S Shcibi MDA BT IR AR At)

J€[1...n]

JE[1...n]
AC} =G(C(),C)

provided with a parameter to be able to do this.

V/e modify the closures so instead of aetion(C}())

= (Vigll... u][a2=H(Z. z,9)])
1

- --‘n-'--") \-" .
NI S

-- - s c L et - ATt T e, . .-"-_b' v
PP, R UL DV, ML S, O 1 ;J‘.;'_Lm~_"m\'a e e atosniinattimtanaannadene:

hypothesis: = 3C}V A[aetion(CP())=Vi€ll... ulld\= Z o;)

@
2 ExaMPLES OF THR Uss or CLOSURES 2.2. DIVIDR-AND-CONQUER WITH CLOSURES
) specification to one requiring the compusation of a closure which, when applied to no arguments,
performs this action; together with the application of that closure.
VAIA'ViEl. .nlldl= Y. al
JE[L...n]
® = 3CVA[setion(C())=[Vi€[lL...nl(d\= Z a;} (abstraction)

But action(C¥, ,())=Vi€v' + 1...y]la}= Zf,,_',,] so this is impossible. Cpy,,, must be

astion(CP(2))=Vi€(l... u][a,=H(T], 2,1)]. We do not yet know the properties of H.

o We now have:
action(C}(2))=Vi€(l... u][a',:H(z::, 2,4)|
o action(CY (2))=Viejl... u’][a}:H(::, 2,1))
sction(C¥ 4, (2)=Vi€ly + ... u[a}=H(;x z,9)|
® So we observe
action(CP(2))

. = actlon(G(C} (Gi(2)), C% 4 1(G,(2)))
=GVig[l .. u’][aﬂ:H(z i, Gi(2),1)]), (Vi€[u + 1...u][al=H(Z ,Gr(2),1))))(2)(expansion)
t w1
o = Viglt... ujfai=H(D, 2, 0] AVi€l + 1. ullai=H(D_, 21
] 1
Assuming G merely generates a closure to produce application of both of its parameters, then
K(Z}, 2,0)=H(Z],Gi(2),i) and H(T;, 2,))=H(L 441, G(2),9). The first unifies to 2=G\(z).
® -17-
L 4

e ey

et
il

\ v
A' ‘L . ala

e

2. ExampriLes or THR Ust or CLOSURSES 2.2. DIvIDR-AND-CONQURR WITH CLOSURES

p The second needs a bit more attention. If we represent 3| as }::" +Zi'+u we learn that
HE 2,0=H(Z} + Ty 1, 2.0=H(T4 ., Gr(2),4), 30 H(q+r,2,0)=H(q, G.(2), i) where

'
t‘wu
el

r=

Lett.:ng H=)\; [z + y] we get G,=X\.[z + r]. This leads to another problem, that there isn’t
L enough information around to compute G,. We have to expand the problem again to bring

about the availability of intermediate values for the intermediate closures. In this case we need
Z;‘I. Instead of

L we want

and

action(C¥(2)) = actlon(G(C} (Gi(2)), C 4,(G.(2))))
vP=H(v}, v} 4,)

F ‘ action(CP(2)) = action(G(C} (Gi(v¥, verp1: 2, Chige (Go(v}, v5i41,2))))

Taking a more intuitive view for the moment, we observe that we want to compute a two-tuple
{(v¥, C¥)) in which v¥=73"" and in which actlon(C}‘(z))js the computation of an augmented
prefiz summation, where a; — z +), instead of a} ~ Y.

/ U
We want G,(v¥,v¥ 14, 2)=2+ T}, s0 we must use v¥ =3} or vP=3 .

We lack only one step to a complete solution. Initially we wanted to compute a closure which,
when computed for that “sub-array”® which is the whole array and applied to no argument,
computes the prefix sum. We will get, instead, a pair of results. One of the results is a value,
h and the other is a closure which, when applied to one value, computes a generalization of the

prefix sum. It remains to ccnvert this back into a closure that can be applied to no arguments.

We have

asetion(C}(2))=Vie[l... uld'= z': +2|
J
and we want
action(F'()) Vi€l .. njlal= i] = action(CP(2))=Vig[l...n]a}= Zn: +z]
1 1

for some 2. Clearly z==0 wcrks.

Summarizing, we have all of the following:

[}
[y
o
]
3 AN NN

pe—
]
1 N
PR

2l

, ‘.
R
SRR
LR

. - a e e . ot Tl et T
PSRN W SR WA W Wy Ph PR

!
4
E;. g
N
4
"l
-_'
ﬁ.‘
2
o
9
b
4
3
-
b, -
&
L
;.
g
9
p
4

»
b .’
L

............

2 Exanrres or THE Uss or CLOSURES 2.2. DIvIDB-AND-CONQUER WITH CLOSURES

n 2migme 2 Nl " madeiee b atee sne asied o euthie AN St dindiie o Aadis et LS A IR e S ¥ e T A" T T e .
Sl gn. et et _lns dare maam st | s e hadh hadt g Il g TEC VN TR TR T T WL - LIS . - - .
e e . pudims Sas b Rt et e Sk e L

actlon(C()= vi<i<nfai= zl:]
1

action(CP()= VvI<i<uld'= 21
i

Vii<uld=Y |AVY +1<i<ufa'=) |
! 1

vxgigu'[a'=2}
)
AVY +1<i<ua"=)"]

AVY +1<i<ufa'=)" +a"]
l

‘We must supply a new parameter:

action(C(20))=V1 < i < nja'=H (i:, 20))
1

action(C}(2)) Eaetlon(C}"(G;(z)), Cur+1(Gr{(2))

E(E] 2)=H(ZF + s 2,0=H{T4 ,G/(2),9), which works if H(z,y)=z + y and

G,(2)= E,“l -+z, but the latter requires having E}" + 2z available. We therefore further modify
the problem by requiring the collection of another value.

u}‘=z

{
U
=H(°?] ":'4— l)

=H(‘Z'. t)

I Wl

The last observations we need (the base case) are:

J
Ci=M Vi < j Silaf=2 + 3 Jl=Xlal=z + ai]

Vie therefore have H(z,y)=z + y making v}=v} + v¥ . CP¥(2) applies C¥ to z, and C¥% .,
to z -~ u,“'. Creating new symbols for the values (v;, v, and v) and closures (C;, C,, and C)
received from the subproblems and passed to the superproblem, we finally get the followirg:

-19 -

AR}
AN]

i

Coeor g

Mo 2 vy ol A s B A A A s e St et A e e et ailasatad W Ukl e o) o ad A bkl ak SRS TR
'@
2. ExaMpLes or TH2 Usk or CLOSURES 3.2. DIvIDR-AND-CONQUER WITH Cx.osuul_s
® -
H(z,y)=z+y
v=u+v, o
v.ieafi=a; .
G(Ch Cr) EC((GI(Z» " C'(G,(z)) '
° Gi2) =2 j
Gl2)=z+4y]
C=)\f"c"" [G(Cy, C)))
C.leafi=\;[a}=2z + a;]
c.mz=xg'~cv-'- [G(C1, C,)(0)]
®
This can be converted to a decorated tree structure by sim _le rewrite rules.
For vxample, we have G(C), C,) = C(G(2)) || C,(G.(2)). We would therefore have a synthesized
TRFE declaration to read, :a part,
(0 inter HAS C, v
MEARS leftson (USES C as C;, USES v as v))
HEARS rightson (USES C as C,, USES v as v,)
TALKS parent (SENDS C, SENDS v)
e and she program for the internal nodes to read, in part,
(in 2'.inter):
C & A CuC(CGi2)) | Co(Go(2)]
where Gi(2)=z
where G,(2)=: + y
v -y v,
L g
$§2.7.3 Connected Components
The problem is to find the connected components of a graph, given an adjacercy matrix (a
‘e matiix A in which a,;=true iff node s is (directly) connected to node j in the graph. The
adjacency matrix will be available for input one row at a time, and a solution is better that
reads: the rows at constant intervals.
In this Subcection we will derive a tree structure that solves part of the problem and meets
certiin worst case time constraints. The derived structure will operate while the rows of the
adja:ency matrix are read in.
0 Forrially, we will assume that there exists a source of rows of the adjacency matrix that can
prov.de one row at a time. Each column will be read by its own processor. Columns and rows
have integers in the range [1,2,...,n] as names. When column ¢'s processor reads row j it
rece;ves the value true if there is a graph edge between 1 and j or false otherwise. The network
we cerive will then store the information in suck a manner that it or some other network can
9 - 20 -
9

. . . P . .o A RN AR
T, .) . S) . T e s
T . R - 2 PP .S AN PRSI) 2 a Ak

A% el Ay

(s

e e T, TR At At i Sl i At
P Sat et Man et ituns ettt et el SRadh it~ Al R A Yl AR N S R A NN LS TR TR TR TS

2 ExampLzS oF THE Uss or CLOSURES 2.3. DiviDE-AND-CONQUER WITH CLOSURES

i’entify connected components of the graph whose adjacency matrix was read. The identification
p-ocess is not the issue here.

The column processor nodes of the network must read elements of the rows of the adjacency
p.atrix at such a time (in relation to the time other processors read their elements of the same
row) that the network will not confuse eiements of different rows of the matrix, and the net must
build a representation of the the (partial) connected components information in some useful
manner. The representation should be compact and the computation should be fast.

First we will derive the structure up to one important implementation decision; then we will
dascribe the two resulting parallel structures.

2.2,3.1 Derivation of a Tree Structure

In the connected compoaents problem, we dc not necessarily want to change the state of the
leaves of the tree or develop a value at the -oot. Instead, we want to change some state so
questions about connected components become easier to answer.

Ve will use the notation CC(¢) to denote the set of nodes in the same connected component
as the node t. CC'(N) is a predicate indicating whether all nodes of N, a set of nodes, are in
a single connected component. Since the state of knowledge of the connected components of a
g aph can vary with time and, in a multiprocessor system, with location, we wiil later introduce
ozher variants of the CC' predicate.

We will read the rows of the adjacency matrix one by one. After we have read all of the rows
we will then engage in another computation, not described here, to put reducenin{j:5 € CC(s)}
. leaf . In what follows we will call the processing that takes place between the reading of
consecutive rows of the matrix a phase.

There arc several solutions to the connected components problem which we reject because they
bave certain undesirable features. One solution, for example, would be to have each node record
thie row numbers of all rows of the adjacency matrix in which it is mentioned. This would require
alot of storage. Another solution is to have each leaf, after each row, find reducenyin {75 € CC(i)}

s far. This solution has the problem that the time between the reading of rows can vary over i

a wide range. R

Cur derivation requires » certain amount of invention. We will assume that the user provides I
this by defining several intermediate predicates and by providing some information. First, the s
iciea of a map to store the state of the connected components so far, and than the idea that the T
n.ap is limited, have to be conceived.) .11
Ve start with axioms about connected componerts: e
cc'({e})]
]
cC'(0) L
T
cc'layrcc'B) A A(B#0 = cC'(aly B) L
CC'A)AA' C A= CC'(A) LT
- 21 - @

- - LEPE I L L m et e e et ..
. . " M AT A g e - DR
. . B . N R JO K o E R . e
- -t . Tt - N D . i . . AN BN
e [T WA W I 0. PIAPRLIT U ¢ S

RO S S
T Tt L e L AT ST U, T AT U U VoL SPC IS VoL

1)

@

N 1 1 AR St S AU AR A M AL Rt e

2. EXAMPLES OF THR UsE OoF CLOSURBES 2.2. DIviDE-AND-CONQUBR WITH CLOSURSS

We observe that the following is trivially true:

CC'(4) A CC'(B) A 3a,bla€ AA BEB A CC'({a,b})| = CcC'(Al B)

First, we supply TRANSCONS with a divide-and-conquer formulation.

vV, WevceceH(w)
where

cc'w) = WLl
\Y

wW=w, ¥y W.
A CC'(W)
A CC'(W,)
A Wi#0 A W, 0 = CC'({arb Wi,arb W,}))

TRA NSCONS can easily check that this meets the axioms, but the combination of the two
halves by a pair of arbitrary elements, one from each half, constitutes a user-supplied invention.

TR2 NSCONS observed that the current state of C'C’ is represented by the choices of pairs
of arbitrary elements, and introduces M to carry this information. Since M represents the
state of knowledge of connected components, we will define a new binary predicate CC(M, X)
which denotes that the mapping M asseris that there exists a connected component C such
that X C C. Taking a finite difference against tke addition of a new set X that is known to be
conr ected, we get:

'_,.
'
.y

. e
,"' -

VX, M3IM'CC(M',X) A YWI[CC(M,W) = CC(M!', W)
A Va,b~CC(M,{a,b})
A VY, Z[CC(M,{a}JY) A CC(M, {3} 2)
2YNX=0 vV ZNX=0)
=~ CC(M', {a,b})]]

)
W I

where
CC(M, W) = [W|L1
\Y)

Peme et

. AN
ER N

N ! LY i Y .
"N PRI S]

¢

W=w, u W,
A CC(M, Wi
A CC(M,W,)
= 3aE Wi, bE W, [M(a, b))

The long conjunct on the second through fifth lines state simply that no connected components
are implied by M' that aren't either implied by M or forced by X.

We .ovite the user to make another critical observation, namely that YW[CC(M,W) = -
CC(M',W)] can be satisfied by Va,[M(a,b) = M'(a,d)]. (S)he can further observe from the v
original axioms that CC({a,b} A 6€A A CC({d,¢c}) A c€C = CC(AUC). We can thus
liberalize the condition on M in CC as foliows:

VX, M3IM[CC(M',X) A M(s,b) = M'a,b) A ...]

where
CC(M,W) = W1
- 20 - .«1
1
't
T
|
) Al
1
-
[
.-\‘J
. ° T - Do

PR T oy "Jr,z,w-rai-w.‘l.W‘wﬂl‘l"(‘"&‘!'. A i g S e Tl T D

2 ExaMPLES OF THE Usz oF CLOSURES 2.32. DiviDs-AND-CONQUER WITH CLOSURES
\'
W=wW, y W,
A CC(M,W)
A CC(M,W,)

N W#D A W, #0
= ZeEW;,5(M(a,5) A BEW, vV CO(M,{B}UW,))])

T his specification is suboptimal because it allows M to be muitivalued. We will examine this
solution in detail and see how it transiates into decorated trees that maintain M in internal
s ate. We will then see what can be done to improve this.

V/e therefore make a change in CC to express the fact that the divisions will always be made
i1, the same manner, and that M need only be defined for one set of subsets of the universe.
This change is the addition of a parameter, a subset of the universe (of nodes in the graph
v hose connected components we are seeking). Later we will repair another deficiency of this
specification, that it allows M to be larger than we would like.

A will be made a ternary rather than a binary relation. M(S,a,b) is true if a connects to b
r:lative to S. The purpose of this is to limit the size of M.

new parameter to CC ranges over particular subsets of the universe. It has two roles: it tells

v hat version of M to use, and it restricts acceptable solutions to CC. CC(S, M, X) is true only
it there exist elements of M(S', z,y), where S’ C S, that show that X is connected. Thisis a
s ronger condition than the original CC{M,W).
1o formalize the new parameter of CC we write: .J
VV. X, M\WEV IM'Va,b[CC(M,W) A CC(M', X) A M(S,a,5) = M'(S,aq,b) -
where o
CC(M,W) = CCU,M,W) T
and 1
CC(S,M,W) = |WI<1 n
v -
Wi=W N L(S) _®
|® A W,=WNR(S)]
A CC(L(S), M, W) B
A CC(R(S), M, W,)
A Wi*D A W,#0 -
= Za WL, dbeW,[M(S,a,b)) .
and .
(o L(S) § R(S)=S

N ow we can perform a synthesis by transforming satlsfy(VV, X, M,WEV I M'Va,b[CC(M, W) A
CC(M',X) A M(S,a6b) = M(S,a,0)]). This works with no problems. We soon

find ourselves transforming satisfy(M’(S,d',¥)). However, this causes no problem. ::-'*
Yet.

Suppose we add an additional condition, M(S,a,8) A M(S, a,¢) = b==c. We start with this: (we
bave replaced occurrences of M by occurrences of M’, as the constraint propagator would do
when analyzing “CC(S, M',W)*.)

. s .
w e T ~ .-

L. B R TR T T R P T s e a A s e ata.s
T S R e T L P T Y U WP MU U LSS SIS NI S WU UL

-—— —— - PR i St amse Seos Sl M Jhait Jhud st te et Aetciede et Bad 0t Rdi R Tl S-St B R Rl SO YA BN AL SCRA SR A A
Fiw P afey ~ - = - - - . - e yias - - . - - - - - - . - - - B . ~ - - <

3. ExAmMrLES OF THE Uss or CLOSURES 2.2. DIvID3-AND-CONQUBR WITH CLosunzs R '_]
‘ -
. A WiED A WD 9

=3aEW, bEW,[M/(S,8,0) A Ve[M'(S,8,c) = c=d]])

This last clause makes us a bit unhappy, when considered together with the expression
M(S,a,0) = M'(S,a,b)

Howaver, we have M(S,a.c) = CC(S,{a,c}) and CC(R(S),{c}UW,) A CC(S,{a,c}) =
cC(S,{a}UW,).

We therefore use V to expose the fact that there are alternatives:

) A (m#ﬂ A W #0
=JacW, beW,{(M'(S,a,8) A FAe#bM(S,a,c)
V 3¢[M'(S,a,¢) A CC(S,{c}UW,)])

. As it is known that M(S, g,) can only be asserted by the above, an inductive proof is available
that ¢ € R(S). This can therefore be replaced by

A Wixk® A W, %0
=2 3IaeW,beW,[(M'(S,a,b) A FeHADM(S,a,c))
. V 3c[M'(S,a,e) A CC(R(S), {c} UW,)])))

This gives two alternative ways to satisfy the specification. We can sathsfy M'(S,q,d) if
M(S,a,8) V A [M(S,q,c). satisfying the other disjunct is harder than this because it re-
< quires satisfaction of a predicate containing R(S), so we prefer the first disjunct when it can
be satisfyed. If we can't use the first disjunct, then we know 3¢[M(S, q,c)] so we have only to

satlsfy CC(R(S), {c} UW,) for that ¢. This leads to: . _':’1
itlify(Jac Wi, beW, L)
[(M'(S,8,8) A Ac#bM(S,a,¢)] v 3¢|M'(S,a,c) A CC(R(S), {c} U WD)]
— bind a to arb(W}),b to arb(W,) In v
% it M'(S,a,0) V A,[M(S,a,c) then satlsfy(M"(S,a,b)) -9
else satlsfy(M(S, a,¢) = CC(R(S), {¢} UW,)) o
2.2.2.2 Alternative Data Structures _,J
, L
- It is now necessary to consider the options for storing M. The type of M is T X U — U, where =
U is the set of nodes ip the graph whose connected components are being determined, and T is
3 set of sets such that UET A(SET A S| > 1 =2 R(S)ET A L(S)ET). The genesis of T is
such that each intermediate node plus the root of the tree has as its set of leaves some element .
of T if each element of U is represented by a leaf. 1
‘e -2 - - .1'
')
A

2 ExAMPLES OF THE Uss cF CLOSURSS 2.2. DIviDB-AND-CONQUEBR WITH CLOSURSS

Because of the type of M, we have four simple options to represent the mapping: We can
rspresent it in one processor’s memory, in the memory of one processor per element of T, in one
processor per element of U, or in one processor per element of T X U. The first possibility would
lack concurrency and the last would require too many processors. The remaining possibilities
include using interior nodes of the tree (corresponding to elements of T') or leaves (corresponding
to elements of U) as the repository for information about parts of M.

Inspection of the specification yields the information that the tree node representing a set § must
be able to answer questions of the form 3c[M(S,a,¢) A ¢7 b} and fiad ¢ suchthat M(S,q,c),
and must be able to satisfy(M(S,a,d)). This requires either keeping M(S,2,y) in S’s node or
providing that node with appropriate ciosures.

That node must also be able to satisfy(CC(L(S), M’', W3)) to atisty(CC(R(S), M', W,)), and

to satisty(CC(R(S), M',e\UW,)) given ¢ € R(S) A CC(R(S), M', W,). This requires another
handful of closures.

Since closures to satisfy(CC(L(S), M',W})) and satlsfy(CC(R(S), M', W,)) would require only
information available below L(S) and R(S) respectively, and since there is no control low path
by which the need to satisfy these two predicates would be evaded, we observe that each interior
node requires a=arb W;, b=arb W,, and the closure \ M. [sqtisty(M'(R(S), s, 2))].

VYe are building a map that maps at most one lesf of the right subtree to each leaf of the left
s.btree. As described, the map is stored in the node that has the appropriate subtrees. However,
osher alternatives are possible.

There are three natural places to store the assertion M(S,s,b). They are the node whose
subtree’s leaves are S, leaf ¢ and leaf b. If the information is stored in S, there must be one cell
for each leaf of the left subtree, and if the information is stored in a then there must be one cell
for each ancestor representing S. If the information is stored in d we have no limit (beyond the

s:ze of the problem) for the amount of storage that must be provided in b. We therefore reject
tais alternative.

Storing M in the node ueading S mimimizes communication (information is where it is used)
making the algorithm take O(logn) steps. These steps are pot constant-time steps because
they require access to a random access memory whose size is O(n), itself an O(logn) operation2
. The algorithm therefore has an O(log? n) running time.

The result could be transformed to place the fact of M(S,q,5) in a. This would result in a

d:flerent algorithm, one that requires the leaves to supply closures to access and modify the
n.ap.

There is an interesting problem here. We would prefer that the leaves not have to know about
e.ements of T. It would therefore be necessary to have the M table within each leaf organised
in a certain order and to have use made of this information in that fixed order. This requires
thiat a “flame front” of subtree handling be arranged such that initially the root is the tree for
which you are trying to associate pairs of elements, and on succeeding subphases the level at
which we are trying to match descends. This algorithm has an O(log? n) execution time because
tiere are Ign subphases, each of which is O(log n).

2The constant factors are such that this is probably not a serious iseue. If the problem instance is
‘arge, say > 2% or so, the RAM access time might be slow. However, much of the communication
netween tree's processors would then be off-chip, making interprocessor communication even slower. If
the problem instance is small, the RAMs in each processor would be small enough to make their access
sime comparable to ordinary logical elements in the processor. Only for a truly immense problem
nstance, say 2°°, would the memory access time dominate the communication time.

- 25 -

Cate 20t o gl S arA I

. T . " oL . 'A&‘.-
R NP U S —n 2

) o
- el

’
[
)

. T
t. u,.‘ — ..’l'.l'

S AR Sae beit St A Aath A

Y

‘e

‘o

‘9

—— TR e R R T T e T, T AT TR
- - Chi - .) . . ~ - - -

2. ExamrLss or THE Uss or CLOSURSS

2.2. DIviDB-AND-CONQUEBR WITH CLOSURSS

We prefer the former data structure, in which M(S, a,d) is represented in S, because the issue
described in the previous paragraph does not arise. That structure will always be awailable to
us u-less the size of a change to M is proportional to the size of S, and this can not be because
the :ombination step of the divide and conquer scheme must be fast for the specification to
paraulelize well in a tree structure.

2.2.3.3 Results of Storing the Map in the Leaves

This Subsubsection will discuss the algorithm’s response to a single row of input.
The paraliel structure is (informally) as follows:

There is a balanced binary tree of processors. The leaves of the tree correspond to the nodes
of the graph, and they are ordered in the order that corresponds to the arrivals of rows of the
adjacency matrix. (This last fact is not important.) For simplicity of exposition we will write
the following as if the leaves were rather than “corresponded to® the nodes. For simplicity we
will assume that the entire adjacency matrix is supplied, rather than only a triangular matrix.

The leaf nodes build approximations to the answer as the algorithm grinds on. Each leaf node
has >ne memory cell for each ancestor. Consider the memory cell for ancestor a in leaf {;. It
is in-tialized to the distinguished value nil, and during the course of the algorithm it will come
to cuntain some 5 such that LCA(j,1)==a and 1 and j are known to be in the same connected
~omponent, provided that some such j exists.

The algorithm works as follows: A leaf is called active if its bit is set ip the current row of
the adjacency matrix. After a row is read in, information is passed upward so each node can
determine whether both of its subtrees contain active leaves, and what the highest and lowest
active leaves are for such nodes. Information is than passed downward so each internal {or root)
node can determine whether it is the top such node. That node sends a message to those two
extreme nodes infcrming them of each other’s identity.

The following cycle is repeated

TU computes spans, TD distributes span information and keeps track of the topness of nodes.

TU istype TREE (i), i€[1,...,n]slzen
root HAS minact, mazact, topp, listop, ristop
HEARS leftson (uses upmin)
HEARS rightson (uses upmaz)
TALKS leftson (sends listop)
TALKS rightson (sends ristop)
inter HAS minact, mazact, topp, listop, ristop
HEARS leftson (uses upmin)
BEARS rightson (uses upmaz)
TALKS leftson (sends listop)
TALKS rightson (sends ristop)
TALKS parent (sends upmin)
(sends upmaz)
leaf HAS active;, ccmate,;, j € ancestors
HEARS INPUT (uses adji;5€(1,...,n))
TALKS parent (sends upmin)
(sends upmaz)

Ca el oL

[,

[/

T L e e e et At ata oA AN AN R A A R B

2 ExaMPLRS o THE Uss or CLOSURES

A el et SRS e it i g S, Shaie hate Al ek 3 Dt et T Yhuth " | A Badt T Sl N etk el gl TN
B T S T T I Bl e A,

2.2. DiviDR-AND-CONQUER WITH CLOSURES

(in TU .leaf;)
‘Y j € ancestors
ccmate,; nil
YiEl,...,n))
temp « ay
upmin «~ upmaz +« if temp then ¢ else nil
dmin « downmin
dmaz ~ downmaz
other ~— npil
pivot «~— pivot
if dmin=q then other — dmaz
If dmaz=i then other — dmin
if other 7 nil then
If cemate, pivoe==nil
then awaken «— ull; ccmate; pives ~— other
clse awaken — ccmate; pivor

(:n TU .inter)
; Jirst establish my status
{(lrangel,lrangeh)) « lrange
((rrangel,rrangeh)} «— rrange
range «— ((min(lrangel,lrangeh), max(rrangel, rrangeh)))
livep «— rangey, A range;
;- This is @ once—per—minor—phase activity
while dstatus 7¢’dead

(:n TU.root)
{(Irangel, lrangeh)) «— lrange
{{rrangel, rrangeh)) — rrange
range «— {{min(irangel, irangeh), max(rrangel, rrangeh)))
livep « rangey, A rangez
while dstatus 7£°dead

(+n TD.inter)

if pstatus €{’live, 'top}

then status«'live
range +«— prange
elseif livep then status«'top
range «— range

else status«—'dead

while status 3¢'dead

(:n TD.root)
if livep then status+~'top
range «— range
else status«~'dead

- 27 -

o

ST I

< e . -’ " .
L= NPUP S W, W P

WP S W AT I WY S W

RN

d o '!"'“F“m--',w. Bk B o S Badh Sy B Shegs Suitd e By Aeth it i aidty
Y PSR4 il LR 8 Rin eV VW L Sl Dl Y 4 - - - e - - - Dl - - - -

‘.
2. Examrrses or Ths Uss or CLOSURES 2.2. DIVIDB-AND-CONQUER WITH Cx.osuut_u
o Eact minor phase the leaves sent up awskening info and get back s packet of info very similar
to tLe one they got in the beginning.
Eacl: leaf, when it dies (§nds out that the node just above it is dead) sends up an *init" message.
When every node has done so the rood broadcasts its own form of “init” and the leaves read
| from the I/O processor that contains the next row of the adjacency matrix.
® Here we describe the overall behavior of the algorithm, considering the parallel structure wo
be a single entity that can do things sequentially. To actually have this effect, there are
syncaronication problems, and below we describe a nodes’ eye view of the situation, in="- Hing
the -vork that each node has to do to coordinate with its neighbors.
Initialize: Have each node read in its element of the adjacency matrix. Those nodes
reading a "1” in the adjacency matrix turn themselves on, as does the node
® whose index corresponds to that of the row of the matrix. Mark the root as
the “focus”.
Survey: Every leaf sends infcrmation telling whether it is awake. Using this infor-
mation, the internal nodes below a focus find out which of them has awake
descendants in each of the two trees {“has two active subtrees®). This is a
straightforward “up” problem.
,
- New root: The highest node with two active subtrees is determined. This is the Least
Common Ancestor (LCA) of active leaves. It becomes the new focus, nodes
between it and leaves become “sctive”, and nodes above it but below and
including the old focus become “dead”.
Tournament: Select an arbitrary active leaf node in each of each focus’s two subtrees.
® Report the identities of the two leaves to their focus. Simultaneously report
the identity of the focus and of the other leaf to each of the two leaves.
Lookup: The leaves contain a variable mapping mapping their ancestors into a leaf
index or the distinguished value nil. The leaves look up the focus in this
mapping. If it is nil, they store the other leaf’s identity. If the left leaf’s value
is not nil, report the value to its focus.
e New awakening: If its left tree reports a leaf ID per Lookup, a focus sends a message to that
leaf commanding it to awaken. &
Refocus: Each focus sends a message to those of its children that are not leaves telling : A:‘
them to become new focuses, and dies. NN
Rep:at (Maybe): If not all ieaves have a dead parent, go back to New Root. 3
° As can be seen above, the algorithm has several subphases, as the focus moves down towards the =
leaves, and each of these subphases has several sub-sub-phases: Survey, New root, Tournament, <9
Lookup, New Awakening, Refocus, and Repeat (maybe). Internal nodes of the tree have the T
stati:s dead, focus or live, and leaf nodes either have status awake or asleep. The behavior of :’ -
each node during each sub-sub-phase will be described. o)
Survey: Leaves tell parents whether they are active. Intermediate nodes: (live and focus only) ‘,
o Get status from descendants. Remember and (live only) tell parent how many subtrees have one =1
or more active subtreces. Remember which subtree was active if exactly one was. T
New root: If a focus has two active subtrees it tells its left (resp. right) child “focus above }
you==({node), you are left (resp. right)”. If it has one, tell that one “focus at or below you" and ..
the uther “die”. It can’t have none. :
‘® - 28 -
‘@

L e ewmg T T T P
D T L L e -~ ~

o

t,

G

T e ¥e eV

2 Examrizs or tHE Uss or CLOSURSS

2.3. DiviD8-AND-CONQUEBR WITH CLOSURSS

Intermediate nodes below a focus (i.e., those nodes that are live) listen to their parents. If one
haars “die” it dies. If one hears “focus above =zzz...” it relays the message and becomes or
rumains live. If one hears *focus at or below” it acts like in the paragraph above.

Leaves that receive a "die” message send thei parent an °I died® message and prepare to read
tae pext line of the adjacency matrix.

Active leaf nodes record the name of their focus.

Tournament and Lookup: Each leaf contains a mapping M relating the name of each of its
aacestors to either nil or the index of a leaf. A sleeping leaf node sends nil to its parent. An
awake leal node ¢ that raceives a “focus above you=(node), you are left" message sends vo its
parent either {{empty,s)) if M(node)=nlil, or {{loaded, M(node))). If it receives “focus above
you=(node), you are right®, it sends 1 to its parent.

A live internal node which receives nil from both children sends the same to its parent. one
tluat receives something else from one child sends that value to its parent, and one that receives
n2p-nil values from both children sends estAer to its parent. The correctness of the algorithm
does not depend on this hoice, which can be random, pseudo-random, or consistent.

Each focus receives a message from esch child. Say the right child’s message is 5. If the left
caild's message is ({(empty, 1)), then {(record, focus, 1, 7)) is sent to the left child and ail is sent
t the right. If the left child’s message is ((loaded,s)), then nil is sent to the left child and
(awaken, 1)) is sent to the right.

Lookup and New Awakening: Internal nodes relay parents’ messages to their children.

I' leal node 1 receives {(record, focus, s, 7)) it sets M(focus) « 3. If it receives {{(awaken,)} it
awakens. (If ¢ doesn’t match it does nozhing.)

F efocus: Each focus sends its children a “become s focus® message and dies. A live pode
receiving such a message from its parent changes its status to “focus®. A leaf receiving such a
p.essage form its parents sends the latter an *I died® message.

F.epeat (maybe): At all times, a node receiving two “I died” messages sends one upward. If a
n>de receives a “become a focus” message it sends its children a “begin survey” message. Live

i1termediate nodes relay such a message, and lesf nodes receiving a “begin survey” message
proceed as in Survey. '

2.2.3.4 Results of Storinz the Map in Internal Nodes

T he tree-structured algorithm of 2.2.2.3 uses O(loga n) time per row of the adjacency mutrix.
More importantly, this constant factor includes a communication between adjacent nodes. It
i+ impossible to do better assuming that the information required to reconstruct connected
¢ mponents is to be kept in the leaves and that there is only to be a logarithmic amount of
iLformation in each leaf. The reason for this is that the action taken by the right subtree of a
g€ ven node depends on information present only in the left subtree, and that the right subtree’s
rcursive analysis of its pattern of leaves to be linked can, in turn, depend on the results of this
fiedback. We therefore have a logarithmic number of steps, each of which takes O{log n) time.

I: is possible to reduce the constant factor, but only by distributing the information differently.

Iristead of having a cell in each leaf for each of its ancestors, suppose we bave a cell in each
ajcestor for each of its leaves. The same number of cells are required, one for each leaf/ancestor

-1
-

- 29 -
Yo
\ _'-1
- .‘ ."
ML : LS e N TN AN e T N e -"..« . R
re e / I N T T = S A A R L TN T e T et e -
. LI . Ve
. "J'-'."J‘f_'.f-"."‘ o L,A\ AP T, AP SN NP R, WL D, W ’\.l\.l-\ L 0, By TR N) el il ol Y Bt

RN T Pt e S A AL A L 24 S8 M DA S el A Sl i S A IR St

(o

2. ExamrLzs OoF THE Uss or CLOSURSS 2.2. D1vIDE-AND-CONQUBR WITH CLOSURZS

——

L pair®. Each internal node contains a map which maps names of leaves of the left subtree into
either nil or names of leaves of the right subtree.

The overall view of the algorithm is as follows:

Each leaf sends its parent its name if its active, or nil. Each intermediate or root nodes sends
its parent either the name of any active node it receives from its children, or nil if it receives nil
P from both children. If it receives two names it chooses arbitrarily. Each intermediate node also
rem¢ mbers what it received from its children.

In aldition, suppose it receives a name from both children. There are two cases. If the name
from the left node maps (in the node’s internal mapping from leaves to values) into nil, make
it map into the name from the right node and do nothing else. If it maps into (say) ¢, send
awaken ¢ to the right child and do nothing else.

If ar intermediate node receives an awaken ¢ node from its parent, it checks to see whether § is
in its right or left subtree. It also checks to see what it has received before.

If a node receives an awaken ¢ message and has already received a name from ¢’s subtree it sends
awaken ¢ message to the appropriate child. If it hasn’t so received it considers itself to have 30
received. (This can involve reacting to further awaken messages, or it can involve looking up
k either ¢ (if § belongs in the left subtree) or the previously received name (if s was in the rignt

‘ subt:-ee and the previous name was in the left) in the mapping and either extending the mapping
or creating a new awaken message.) X

The root sends its children “ok” when it’s done. Intermediate nodes relay such “okay” messages.

Eacl: leaf reads the next line of the adjacency matrix when it receives this ok, and starts a new
cycle.

b The “wrapup”, where each leaf gets the name of a representative of its connected component,
is also faster under this arrangement. The root sends its right child its correspondences one by
one, followed by “end®. When a node receives ¢ — b it replaces b — ¢ (if it has one) by
@ — c¢. This is not done for ~ bpil. Intermediate nodes also relay correspondences received
from parents. When an intermediate node rece.ves “end” frem its parent, it dumps its own
corruespondences as they now stand and then sends its own “end”. A leaf node initializes a cell
to its own name and a cell named b changes this value to a if it receives a — 5. A Jeaf node
r knows it bas the right value when it sees “end”.

()

K » - .1
1
{
3and it should lay out reasonably nicely because the bigger nodes are closer to the root ¢f the tree RSN
. -4
[- 80 ~ - q
4

L, -

.'..' . f*‘.ﬂ}.\ . .- - R . ‘.'‘.~ ‘_“." . -. E -) S st .~. .. - . _.... i Lo P

PR . . - e - . - . R . - o ot . - o S,
* ~ - e P TP R a T P A, . L e o b, L JSRDNT VAPURAY T AR U, G DIRT RSP WRRRE SR S S

. L, .)

IR S .) P N W -

‘@

“1

(o

r"i B Tk ek el LA AR A el na A Ran) A Nl R OsRh b R -n A A il ST O

',,-,{\.

e AN ECIE R R Le e e & -

Chapter 8
Use of Additional Techniques — Binary Addition

§3.1 Notation

In what follows, we will assume that a problem instance resides in vectors A and B, each
containing individual “bits® a, resp. d; for 0 < 5 < n—1. The two states of a bit are reprusented
by the values 0 and 1 This discussion is specialized to binary integers, but any radix can
be used by reinterpreting the logical operators as follows: @ = + (mod (the radix})), A=

Az,y[z + y 2(the radix)], ~= X;[(the radix)—z|, and V= A, ,[z + y >(the radix—1})]. We
apply logical operators to the values 0 and 1, interpreting O as false and 1 as true. A represents

0<ign—y 02’ and B likewise. The answer is similarly represented in C. We will have

occasion to refer to carry;, the carry coming into position ¢. We use @ as the symbol for
“axclusive OR".

Cur starting point for all of the syntheses in this paper will be the specification:
; we want to add A 4 B where A=g,_;...6,38¢ and B similarly.
vVo<i< n—1
g] A b v
ci==a; @ b; ®’2‘[a1 Abi A j<h<i[at V b]]

Figure 2. Our "Standard” Specification of Binary Addition

A derivation of this specification from the “grade school” specification for addition

carryo=0
vo<i<n-—1
¢i=a; @ b; @ carry;

carryir1=(carryi A (ai V &)) V (8, A b;)
Figure 8. “Grade School” Specification for Binary Addition

et et et '.'_- RIS Y SRR JR
& - -, P RN S T

. LIRS A B Y A LR IR I I LI L S IR N T T gt g et
e Lo el RO SRR P WAL UAE SN WA LN W K, APPSR S L. P, PR P

i s e A AR A

q -y e i B Bt R i S TN A U S "N O U I P R P D e
SO LRI AL RS A &a &N IS AR e MUt SLINERIEE S T T TN TR T T - P . - . -
. W e T W T T - Ly

3. B1{ARY ADDITION 3.2. CARRY LOOK-ANBAD CirCUIT

Figure 3. “Grade School” Specification for Binary Addition

is beyond the scope of this paper, although a derivation of the latter from the former will be
brieiy sketched.

Frequent reference is made of a system called TRANSCONS. This is the TRANSformational
[) ConMcurrency Synthesizer (aescribed elsewhere [King-83] [KingMayr84]) which we are develop-
ing »t Kestrel. TRANSCONSis an architecture synthesis system which can be used to transform
high level specifications into parallel structures. Its features of interest here include the ability o
syntaesize tree structured processor networks from specifications, and the ability to reformulate
concurrent computations by reorganizing the work differently among a collection of processors.

§3.2 Carry Look-ahead Circuit

Con.ider the definition of Figure 1. The problem with directly synthesizing solutions to this by
the :nethods of TRANSCONS resides in the nesting of quantifiers such that the bound variable
of tke outer quantifier is one end of the range of the inner one. The reason this is a problem

% is that it forces the computation of #(n3) boolean values, namely V;<cx<ilax V di) for each
0<j < i< n—1(atotal of n(n—1)/2 (1, 5) pairs).

§§3.2.1 Quantifier Levelling

® When the following equivalences are applied successively (brief proofs appear in the Appendix)
v = ~ P(z)] <1 -

1Y [P =max{~ P(z)] < (V-to-maz)
< zgu[P(z) AFuy)<z)|= o) 2 =<“[P(z)] (constraint-to-dinder)

1< §<“[P(z)] = xzn:it[P(z)] >1 (3-to-maz) k

. : V"‘

®
‘o - 82 -

we get the following sequence of assignments to ¢; (changes underlined):

6;=e;®H D jzi[aj Abdj A j<z<‘[dg A

= ¢;i=0,@b:® 3 [a; Ad;j A max[~ (ax V ba)] < j]
§<s k<t

=¢,=¢; bR nt!-<c[~(EVh)] < j<|‘la‘i A b,']

26=6,Qb® 3:2,‘[65 Abdl 2> Tg(‘* (ax Vv b))

It should be observed that the first transformation solved the basic problem of the need to com-
pute #(n?) values, and tbat alter the last transformation it is possible to do both enumerations
i1, parallel. The bound variable of one epumeration is no longer an endpoint of the range of the
o-her. This means that where we would previously have had approximately n?/2 data items to
consider, we now have approximately 2n.

Ve now have

vVo<i< n—1
ei==a; ® b; ® max(a; A b;] 2 max{~(ax V &)}
J<s k<y

It is possible to express this as an inequality between corresponding elements of the results of
t'vo parallel prefix computations as follows:

vo<i<n—1
and;=a; A b;
nori=~(a; V b;)
mazland;= If *nd; then ¢ elte —oo
mazlnor,= if nor; then ¢ else —oo

mazand,=~ max [maziand;) *
0 s<i

maznor;=_max [mazlnor;) *
05 i<

Ci=a; ® b; @ (mazand; > maznor;)

TRANSCONS will be able to synthesize the usual parallel prefix tree structure [Browning-80)
for each of the two lines marked by an asterisk above. Most of the details of this synthesis are
bayond the scope of this paper, but the tree structure comes from uses of divide-and-conqguer.
The intermediate steps, taken from [KingMayr-84), are shown in the Appendix.

There are two parallel prefix trees in the addition parallel structure; one for the variable named
mazand and another for maznor. The overall structure is shown below.

- 388 -

- AT ., - R I Tl I B Ww S
e et a™mw T2 . . maP mlea

PR

.4
, " . . .'. ,‘ .
NN I

€0,
l.'."'_,
ale,

! L [

v

3. BINARY ADDITION 3.2. CARRY LOOK-AHEAD CIRCUIT

Bz As Az B, G C, B A A B
Figure 4. Synthesized Look-Ahead Circuit for Binary Addition
There are two important differences between this structure and standard ones [Hwang-79)].

Because the parallel prefix trees are required to handle integers in the interval {0, n}, the size
of the nodes and the width of the data paths within the trees are 4(lg(n)). In the standard

network it would be 6(1). This can be alleviated by some careful reasoning, to be described
below.

Because of the nature of the parallel prefix network synthesized by TRANSCONS, each node is
pertially responsible for the choreography in its local region. The importance of this fact is that
either the nodes need be big enough to participate in an asynchronous data transfer protocol
with a handshake, or a global clock must be provided. This is not a serious problem because
otaer parallel prefix networks could have been used {and incorporated into TRANSCONS),
and because a three- or five-inverter clock (ConMesd-80] can easily be included on the chip if
necessary.

§§3.2.2 Data Path Width Reduction

To raduce the width of the data paths and still use a parallel prefix network, an associative
operation with constant range and domain must be used.

Now either maxo < j < {[mazland;]=maxs < ; < i+1[Mmazland;] or maxy < 5 < i+1[mMmazland;|=i+

1, ard similarly for mazinor. A case analysis could show that we would have the following table:

mazand; > maznor;

=3
' ‘"do’j-x nori41 u I true l false I

and true | true
nor false | false
both true | true
neither true | false

(*th s is impossible but knowledge of this fact is unnecessary for the argument)

The effect of and;, 1, nori.1, andi+2 and nori43 on the truth of mazand;42 > maznor,a
give « mazand; > maznor; can also be summarized below. (Here the impossible combinations

-84 -

e
. e

. « & = . .
AP Y SEWRE W L P 9

ACMES S 3

et A N AL St TSl Sl A R P o — M SR AP AL S SRACEA P SN N CatE R

3 BINARY ADDITICN 3.3. RIPPLE-CARRY AND BIT SERIAL CIRCUITS

bave been omitted for brevity.)

mazand; > maznor; =

4 ‘ | true | false |
Y andiyy, noriy, andiy2, NOTi4a §

nomne true | false
and;4 true | true
noriy1 false | false
and,; 3 true | true
andiy2,and;+ true | true
and;3,n0r, 4 true | true
nori 42 false | false
noriy3,8nd41 false | false
NoOri42, ROTip1 false | false

We seeUse of this form of reasoning is justified by the properties of max, that the value
o’ a max expression depends on a single extreme element that each string of inpul bit
pairs is an operator that can do one of three things: it can act like a single pair of bits
bsth of which are true (called {and) below, like a single pair of bits both of which are
false (called (mor)), or it can act like a pair one of which is true (called {(other})). The bi-
nary operator @==X. ,[if y=(and) then (and) elseif y=(nor! then (nor} else z] is associa-
tive, and that if the identity of this operator is considered to be {other) then mazand; >
maznor,=(@o < j g ¥={(and}). This is precisely what was needed: an operator, amenable to
parallel prefix computation, with finite range and domain.

Use of a specification based on this operator will yield a network similar to Figure 3, except that
there will only be a single parallel prefix tree, each bit’s carry will be used directly rather than
¢omputed from the two parallel prefix trees, and (of ccurse) the widths of the data paths and
tlie sized of the nodes will be smaller.

§3.3 Ripple-carry and Bit Serial Circuits

Consider our “standard specification” of Figure 1. If we apr the quantifier levelling of
Subsection 4.1, we get:

vo<i<n—1
(=a;, @b ® r}lgglaj A b 2> l;lgfl'*(dk V b))

We repeat the reasoning for representing mazo < j <.4-1{P(2)] in terms of mazo < ; < i[P(z))
aad P(f 4+ 1) (see Subsection 4.2). We also apply the next argument of that Subsection , giving
a recurrence for the max... > max... expression. That expression has a single free variable,
7 and we will call its value carry;.

n
ow

-85 -

R N G S S AR S SN Y AP . S IO SN T EPRI Sp

._A!“

- - .
4.._1 P W L.}

.

P

FC_IV

]
2 4 - . W

¥

| pre SRR A s & 0t il i Al s . AR DA AP EMEMEAMMIN S A SR AR
= T T~ - T -

(o

(o

(o

(s

¥

3. BLiARY ADDITION 3.8. RIPPLE-CARRY AND BIT SERIAL ancurr_s

Con:ider the recurrence carryo=false and carry,1=(carry; A (a: V b)) V (a; A b)3More
prec-sely, carry;4.1==if a; A b; then true elseif ~ (a; v b,) then false else carry;. . This leads
immadiately to the grade school specification of Figure 2.

Using the techniques of TRANSCONS (assigning a processor to each value, developing an

interconnection graph, and specifying the appropriate work for each processor), we immediately
get the ripple-carry unit shown below.

4 Jvr V)

faise

~
o,

) s A G % A G 8, A & B A,
Figure 5. Ripple Carry Parallel Structure
A te:hnique called aggregation (King-83] is applicable. This technique replaces a related seriss
of p: ocessing elements by a single element that receives a series of related data. The circuit of

Figure 4 is an indexed series of identical modules, and identifying corresponding nodes of the
series of modules gives the bit serial addition circuit shown below.

. Lo
‘ &

lalse

Ag ALA,
o6 .G emd meep, B, B, -
Figure 6. Serial Adder

- 86 -

ey

P

P 5
[YO

N « ..‘A.‘
%
) j

R I

S
IR
s J

.< |
-
A .!L;A o

e 0 '
T, .
. .u. 2t

*

"t g Sud B A e hat g it Ak teg Sag o

(,

S

K +

»

[,

‘AKS-83)

'ArmGee-78]
‘ArmGee-79)
‘AtkHew.TT]
‘Barter-82)

‘Bateher-68]

BenKung-79}

BSdJ-82]

'ChanMis-78]

'ChenMead-82]
Choo-82]
Chwreb-51]

_Clarke-78]

ey \ gand L ol s -
L am ool gk Sed st Sng Sad mal s Ak Sl g A At Sl Ak Nadl Al ol

References

M. Ajtai, J. Komlés and E. Szemerédi “An O(nlogn)} Sorting Network”
Proceedings of the 15 ACM Symposium on Theory of Computing, pp. 1-9,
1983

W. Armstrong and J. Gecsei “Adaptation Algorithms for Binary Tree
Networks® Univerasity of Montreal Publication 289, 1978

W. Armstrong J. Gecsei “Architecture of a Tree-Based Image Processor”
Tech Report, Univeraity of Montreal, Publication £91, 1979

R. Atkinson and C. Hewitt *Specification and Proof Techniques for
Serializers® MIT AJ Lab Tech Memo 438, August 1977

C. Bartet “Policy-Protocol Interaction in Composite Processes® MIT Al Lab
Memo 692, September 1982

K. Batcher “Sorting Networks and their Applications® AFIPS Spring Josint
Computer Conference, pp. 307-314, 1968

J. Bentley and H. Kung "Two Papers on a Tree-Structured Parallel
Computer® Carnage-Mellun Unsversity Tech Report CMU-CS-79-142,

) September 1979

R. Byrd, S. Smith and S. de Jong ®"An Actor-Based Programming System”
IBM Research Report #RC 9204 (#40424), January 1982

K. Chandy and J. Misra “Specification, Synthesis, Verification and
Performance Analysis of Distributed Programs; a Case Study; Distributed
Simulation” University of Tezas, Austin Tech Report TR-86, November 1978

M. Chen and C. Mead “Formal Specifications of Concurrent Systems”
Technical report 5042:TR:82, California Institute of Technology, 1982

Y. Choo “Hierarchial Nets - A Structured Petri Network Approach to
Concurrency” Cal Tech Report TR:5044:82, November 1982

A. Church “The Calculi of Lambda-Conversion® Annals of Mathematical
Studies # 6, Princeton University Press

E. Clarke “Concurrent Programs are Easier to Verify than Sequential
Programs® Duke Universily Tech Report CS-1978-6, July 1978

TR ey, b Al il Al e Wal M M N R

S ‘ail ‘agl. Sagk A

Uil

R2?I RBNCEY

(S’ G S D

e et i SR SAERSNE A)
ren g avat o~ SNEL Snd g el RRELENL S - . - Ve Jt e Tt - NENENAI g RSN

REFERENCSS

[Cliagen81]

[CLW-T9]

[CuiPachl-83]
[De1nis-T5]
(Ed wards-78]
[Fieh-83]
[FishPat-80]
(GaiPaul-83]
(Ga:teri-80]

[Grths.75]

(Ha:k-5]
(Ha:lpern-81]

[Hsistead-78]

[Ha=bison-80)

[HMS-83]

(K81t-79]

{King-83]

(KingBrown-83]

W. Clicger “Foundations of Actor Semantics®, PhD Thesis , MIT A7 Lab
Tech Report AI-TR-633, May 1981

K. Chung, F. Luccio and C. Wong “A Tree Storage Scheme for Magnetic
Bubble Memories” IBM Reaearch Report #RC 8116 (#34797), December
1979

K. CilJ. Pachl “Folding and Unrolling Systolic Arrays® University of
Waterloo Research Report CS-82-11, April 1982

3. Dennis "First Version of a Data Flow Procedure Language® Project MAC,
MIT, May 1975

N. Edwards “Conigurable Pipelined Application Logic Systems” IBM
Research Report #RC 7513 (#31451), September 1978

Faith E. Fich “New Bounds for Paralle]l Prefix Circuits® Proceedings of the
15*® ACM Symposium on Theory of Computing, pp. 100-109, 1983

M. Fischer and M. Paterson “Optimal Tree Layout® University of
Washington Tech Report 80-03-02, February 1980

Z. Galil and W. Paul “An Eficient General-Purpose Parallel Compute-”
Journal of the ACM, vol. 30 #28, pp. 360-357, April 1983

C. Galtieri "Architecture for a Consistent Decentralited System® /BM
Research Report #RJ2846({36132), June 1980

P. Grifiths “SYNVER: Ar Automatic System for the Synthesis ard
Verificaiion of Synchronous Processes” Harvard PAD Thesis and Tech Report
TR-20-75, June 1975

M. Hacx *Decidability Questions for Petri Nets® PAD Thesis, MIT MAC
Tech Report MAC-TR-161, December 1975

B. Hailpern “Modular Verification of Concurrent Programs”IBM Research
Report #RC 9130 (#39971) , November 1981

R. Halstead Jr. “Multiple-Processor Implementations of Message-Passing
System:c®, Masters Thesis , MIT Tech Report MIT-LCS-TR-198, January
1978

S. Harbison "A Computer Architecture for the Dynamic Optimization of
High-Level Language Programs® PAD ThAesis, CMU, Tech Repart CMU-CS-
80-143, September 1980

P. Hochschild, E. W. Mayr, and A. Siegel *Techniques for Solving Graph
Problenus in Parallel Environments® Proceedings of the 24*® Symposium vn
Founda‘ions of Computer Science to appear November 1983

Elaine {{ant “Efficiency Considerations in Program Synthesis: A Knowledge-
Based Approach® , Ph. D. Thesis, Department of Computer Science,
Stanfori University, 1979

R. Kinz “Research on Syathesis of Concurrent Computing Systems”
Proceedings of the 1088 Symposium on Computer Architecture, pp. 89-46,
1983

R. King and T. Brown *“Proposal for Research On Automatic Synthesis

L . it S Sad S AEAL L B A G L S SEar g IR A]

(s

Rersaences

. 4 A 4Bal ol Jhass e amegeNh Yl mrtde At A A MR LA Nk SR SRt TR S e R
Calr i, - e

ReresnranCEs

'KungLeh-79]

{KungLel-76]
'LadFish-80)

'Leighton-81)

|LeiSaxe-81)

{LelSaxe-82]
Lengsuer-83}

(LipVal-81]

IMilner-78]
[MirWin-84)

{Paige-79)

Rambsugh-75]

‘Ramehandani-73]

‘ReifVal-81]
‘Sehwartz-80]

Smith-83]

Smith-83]

of Tree-Structured Concurrent Computing Systems” , Kestrel Tech Report
#KES.L.83.1, 1983

H. Kung and P. Lehman *Systolic (VLSI) Arrays for Relational Database
Operations® Carnegie Mellon University Tech Report CMU-CS-8G-114,
October 1979

H. T. Kung and Charles E. Leiserson *Systolic Arrays for VLSI® Sparse
Matriz Proceedings, 1978

R. Ladner and M. Fischer “Parallel Prefix Computation® Journal of the
ACM, vol. 27 #4, pp. 891-838, 1980

F. T. Leighton “A Layout Strategy for VLSI Which is Provably Good”

Proceedings of the 14*8 ACM Symposium on Theory of Computing, pp. 85-
97, 1982

C. Leiserson and J. Saxe “Optimizing Synchronous Systems® Proceedings of
the 2289 Annua! Symposium on the Foundations of Computer Science, Pp.
25-36, 1981

C. Leiserson and J. Saxe “Optimizing Synchronous Systems® MIT Tech
Report MIT/LCS/TM-215, March 1982

C. Lengauer “"A Methodology for Programming with Concurrency” U. of
Toronto Tech Report CSRG-142, April 1982

R.J Lipton and J. Valdes “Census Functions: an Approach to VLSI Upper
Bounds” , Proceedings of the 21% JEEE Symposium on the Foundations of
Computer Science, pp. 13-22, 1981

R. Milner “Algebras for Communicating Systems” Tech Report, Univeraity
of Edinburgh # CSR-25-78, April 1978

W. Miranker and A. Winkler “Spacetime Representation of Computational
Structures® Computing 32, 1984 Pp. 93-114

R. Paige “Expression Continuity and the Formal Differentiation of
Algorithms® Technical Report #15, Courant Institute, New York, pp. 269-
658, 1979

J. Rambaugh “A Parallel Asynchronous Computer Architecture for Data
Flow Programs”PhD Thesis, MIT MAC Tech Report MAC-TR-150 , May
1975

C. Ramchandani “Anpalysis of Asynchronous Concurrent Systems by timed
Petr1 Nets® PAD Thesis, MIT MAC Tech Report MAC-TR-120, July 1973

J. Reif and L. Valiant “A Logarithmic Time Sort for Linear Size Networks"®
, Harvard Tech Report # TR-13-82, 1982

J. Schwartz *Uitracomputers® ACM TOPLAS, vol. 2 #4 pp. 484-521,
Octcber 1980

D. Smith “Top-Down Synthesis of Simple Divide & Conquer Algorithms”

Tech Report, Naval Postgraduate School, Montery, CA 98940, November
1983

D. Smith “Derived Preconditions and Their Use in Program Synthesis® Tech

.
P

v

[I

P
’ 0
e

PTG P

,
.
Q.
s

@

R

AChUhe AAR ISt At e

i
|

',’.

4

(o

Reri:RENCES

v - il S Yl -
Nl - e ra s i i T e SN are At IR AT IR AR Sl M R S

REFSRENCES

[Tharisult-82)
[Weog-79}

[Welper-82]

Report, Naval Postgraduate Schaool, Montery, CA 93940, November 1983

D. Theriault “A Primer for the Act-1 Language® MIT Al Lab Memo 672,
April 1682

K. Werg “An Abstract Implementation for a Generalized Data Flow
Languaze”PhD Thesis, MIT Tech Report MIT-LCS-TR-228 , May 1979

P. Wolper “Synthesis of Communicating Processes from Temporal Logic
Specifications® Stanford Tech Report STAN-CS-82-925, August 1982

- 40 -
- ‘v . e LRI L T e Ty
\ i et . -, e L. LT
- v ¥ -\ - . N R Ry LT - -
g RRPAE AT Z S PN ALY < - Lt N e e e

4
@

3
J
i
-]
3
!

;o
A Lo .
LI Y L

.
.l

3
P
b
L. o s

s

IS AT A T R e et S/ M S e e A A S ittt A s it et Jhafh St gttt Sgiod

END

e

P SR

R p—

o
-
o

. . . - .- PR " W .
.. .. L e o - .

- R . . *u - - .. e .

P L PEAPLIEE. VR PR W PUWE WUV WL PO TPV T

